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Complementary Dual Algebraic Geometry Codes
Sihem Mesnager1 Chunming Tang2 Yanfeng Qi3

Abstract

Linear complementary dual (LCD) codes is a class of linear codes introduced by Massey in 1964. LCD codes have been
extensively studied in literature recently. In addition to their applications in data storage, communications systems, and consumer
electronics, LCD codes have been employed in cryptography. More specifically, it has been shown that LCD codes can also help
improve the security of the information processed by sensitive devices, especially against so-called side-channel attacks (SCA) and
fault non-invasive attacks. In this paper, we are interested in the construction of particular algebraic geometry (AG) LCD codes
which could be good candidates to be resistant against SCA. We firstly provide a construction scheme for obtaining LCD codes
from elliptic curves. Then, some explicit LCD codes from elliptic curve are presented. MDS codes are of the most importance in
coding theory due to their theoretical significance and practical interests. In this paper, all the constructed LCD codes from elliptic
curves are MDS or almost MDS. Some infinite classes of LCD codes from elliptic curves are optimal due to the Griesmer bound.
Finally, we introduce a construction mechanism for obtaining LCD codes from any algebraic curve and derive some explicit LCD
codes from hyperelliptic curves and Hermitian curves.

Index Terms

Linear complementary dual codes, algebraic geometry codes, algebraic curves, elliptic curves, non-special divisors

I. INTRODUCTION

Linear complementary dual (LCD) cyclic codes over finite fields were first introduced and studied by Massey [15] in
1964. In the literature LCD cyclic codes were referred to as reversible cyclic codes. It is well-known that LCD codes are
asymptotically good. Furthermore, using the full dimension spectra of linear codes, Sendrier showed that LCD codes meet the
asymptotic Gilbert-Varshamov bound [21]. Afterwards, LCD codes have been extensively studied in literature. In particular
many properties and constructions of LCD codes have been obtained. Yang and Massey have provided in [24] a necessary and
sufficient condition under which a cyclic code have a complementary dual. Dougherty et al. have developed in [6] a linear
programming bound on the largest size of a LCD code of given length and minimum distance. Esmaeili and Yari analyzed LCD
codes that are quasi-cyclic [7]. Muttoo and Lal constructed a reversible code over Fq [18]. Tzeng and Hartmann proved that the
minimum distance of a class of reversible cyclic codes is greater than the BCH bound [19]. In [13] Li et al. studied a class of
reversible BCH codes proposed in [12] and extended the results on their parameters. As a byproduct, the parameters of some
primitive BCH codes have been analyzed. Some of the obtained codes are optimal or have the best known parameters. In [3]
Carlet and Guilley investigated an application of LCD codes against side-channel attacks, and presented several constructions of
LCD codes. In [5], Ding et al. constructed several families of LCD cyclic codes over finite fields and analyzed their parameters.

Let K = Fq be a finite field of order q and C/K be a smooth projective curve of genus g. We denote by D a divisor over
C/K : D := P1 + . . .+ Pn, where Pi(i = 1, · · · , n) are pairwise different places of degree one. Let G be a divisor of C/K
such that supp D ∩ supp G = ∅. Let C := C(D,G) be the associate algebraic geometry (AG) code with the divisors D and
G defined as

C(D,G) = {(f(P1), . . . , f(Pn)), f ∈ L(G)},

where L(G) = {f ∈ K(C), (f) � −G} ∪ {0}. The code C is the image of L(G) under the evaluation map evD given by

evD : L(G) −→ Fnq
f 7−→ (f(P1), . . . , f(Pn)).

An algebraic geometry (AG) code C(D,G) associating with divisors G and D over the projective line is said to be rational.
In particular BCH codes and Goppa codes can be described by means of rational AG codes. All the generalized Reed-Solomon
codes and extended generalized Reed-Solomon codes can be defined under the framework of AG codes.

Recently, it has been shown that codes can also help improve the security of the information processed by sensitive devices,
especially against the so-called side-channel attacks (SCA) and fault non-invasive attacks.
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In this paper, we are interested in the construction of particular AG complementary dual (LCD) codes which can be resistant
against SCA. We firstly provide a construction scheme for obtaining complementary dual codes from elliptic curves (Theorem
3.2). Then, some explicit complementary dual code are presented. All the constructed LCD codes from elliptic curve are MDS
or almost MDS. Moreover, they contain some infinite class of optimal codes meeting Griesmer bound on linear codes. Finally,
we introduce a construction mechanism for obtaining LCD codes from any algebraic curve (Theorem 5.1 and Theorem 5.2)
and give some explicit LCD codes from hyperelliptic curve and Hermitian curves. The constructed LCD codes presented in
this paper could be good candidates of codes resistant against SCA, that is, codes having the property of being complementary
dual codes with high minimal distance closed the Singleton bound.

This paper is organized as follows: In Section II we introduce the notations used in this paper and recall some basic facts
about algebraic geometry codes. In section III, we present a general construction of LCD codes from elliptic curves. In Section
IV, some explicit LCD codes from elliptic curves are derived. In Section V, we introduce a construction mechanism for
obtaining LCD codes from any algebraic curves and give some explicit LCD codes from hyperelliptic curve and Hermitian
curves.

II. PRELIMINARIES

In this section, we introduce notations and results on LCD codes, algebraic geometry codes, and elliptic curves.

A. Complementary dual codes and optimal codes

A linear code of length n over Fq is a linear subspace of Fnq . There is a canonical non-degenerate bilinear form on Fnq ×Fnq ,
defined by

< (a1, · · · , an), (b1, · · · , bn) >= a1b1 + · · ·+ anbn.

For a linear code C of length n, the code

C⊥ = {v ∈ Fnq :< v, c >= 0 for any c ∈ C}

is called the dual of C. The code C⊥ is linear, and we have

dimFq (C) + dimFq (C⊥) = n.

A linear code C is said to be a linear complementary dual (LCD) code if the intersection with its dual C⊥ is trivial, that is,
C ∩ C⊥ = {0}. The weight wt(v) of a vector v ∈ Fnq is the number of its nonzero coordinates. The minimum Hamming
distance d of a linear code C 6= {0} is defined by

d = min{wt(c) : c ∈ C}.

An [n, k, d] linear code C is a linear code of length n, dimension k and minimum Hamming distance d. We shall use the
following codes.

Definition Let a = (a1, · · · , an) with ai ∈ F?q and C ⊆ Fnq . Then

a · C := {(a1c1, · · · , ancn) : (c1, · · · , cn) ∈ C}.

Obviously, a · C is a linear code if and only if C is a linear code. These codes have the same dimension, minimum Hamming
distance and weight distribution.

Let nq(k, d) := min{n : there is an [n, k, d] linear code over Fq}. The [nq(k, d), k, d] codes are called optimal codes. The
following result is known as the Griesmer bound (see [4] or [10]).

nq(k, d) ≥ gq(k, d) :=

k−1∑
i=0

d d
qi
e. (1)

Under certain conditions on d and q, it can be shown that nq(k, d) = gq(k, d) (see [4] and [9]) for further references. Any
[gq(k, d), k, d] code is optimal. Obviously,

nq(k, d) ≥ gq(k, d) ≥ k + d− 1.

The inequality nq(k, d) ≥ k + d − 1 is known as the Singleton bound. If d > q, then the Singleton bound is always worse
than the Greismer bound. The [n, k, d] codes with n = k + d − 1 (resp. n = k + d) are called maximum distance separable
(MDS) codes (resp. almost maximum distance separable (MDS) codes).
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B. Generalized algebraic geometry codes

Let C be a smooth projective curve of genus g. Throughout this paper, we assume P1, P2, · · · , Pn are pairwise different
places of C of degree one and denote by D the divisor P1 + P2 + · · · + Pn. We fix some notations which will be used
throughout this paper.
• Fq denotes the finite field with q = pm elements;
• Trm1 (x) =

∑m−1
i=0 xp

i

denotes the trace function from Fq to Fp;
• C denotes a smooth projective curve over Fq;
• Fq(C) denotes the function field of C;
• C(Fq) denotes the set of Fq-rational points of C;
• Ω denotes the module of differentials of C;
• (f) denotes the principal divisor of 0 6= f ∈ Fq(C);
• (ω) denotes the divisor of differential 0 6= ω ∈ Ω;
• vP denotes the valuation of Fq(C) at the place P ;
• ResP (ω) denotes the residue of ω at P ;
• G denotes a divisor of C over Fq;
• Supp(G) denotes the set of places in the support of G;
• L(G) := {f ∈ Fq(C) : (f) � −G} ∪ {0};
• Ω(G) := {ω ∈ Ω : (ω) � G} ∪ {0};
• l(G) denotes the dimension of L(G) over Fq;
• i(G) denotes the dimension of Ω(G) over Fq .

Two divisor D1 and D2 are called equivalent, if there is a function f ∈ Fq(C) with (f) = D1 −D2. Denote two equivalent
divisors D1 and D2 by D1 ∼ D2. The following famous result [23], known as the Riemann-Roch theorem is not only a central
result in algebraic geometry with applications in other areas, but it is also the key of several results in coding theory.

Theorem 2.1: Let G be a divisor on a smooth projective curve of genus g over Fq . Then, for any Weil differential 0 6= ω ∈ Ω

l(G)− i(G) = deg(G) + 1− g and i(G) = l((ω)−G).

We call i(G) the index of speciality of G. A divisor G is called non-special if i(G) = 0 and otherwise it is called special.
Note that g − 1 is the least possible degree of a divisor of G to be non-special, since 0 ≤ l(G) = deg(G)− g + 1. Moreover,
if deg(G) = g − 1, then G is a non-special divisor if and only if l(G) = 0. A non-special divisor of degree g − 1 is never
effective.

Let G =
∑n
i=1miPi and H =

∑n
i=1m

′
iPi be two divisors. Then, we call

∑n
i=1 min(mi,m

′
i)Pi the greatest common

divisors denoted by g.c.d(G,H). Such a divisor is supported on the places common to the support of both divisors with
coefficients the minimum of those occurring in G and H . We call

∑n
i=1 max(mi,m

′
i)Pi the least multiple divisor denoted

by l.m.d(G,H). Such a divisor is supported on all the places in the supports of G and H with coefficients the maximum of
those occurring in the divisors G and H .

For a divisor G of C with vPi(G) = 0(i = 1, · · · , n) and 2g − 2 < deg(G) < n, and a vector a = (a1, a2, · · · , an) with
ai ∈ F?q , we define a generalized algebraic geometry code

GC(D,G,a) := {(a1f(P1), · · · , anf(Pn)) : f ∈ L(G)}. (2)

If a = (1, 1, · · · , 1), then, GC(D,G,a) is a classical algebraic geometry code denoted by C(D,G). If C is a curves of genus
1 (called elliptic curves), GC(D,G,a) (resp. C(D,G)) is called generalized elliptic code (resp. elliptic code).

Let ω be a Weil differential such that vPi(ω) = −1 for i ∈ {1, · · · , n}. Then C(D,G)⊥ = e·C(D,H) with H := D−G+(ω)
and e = (ResP1

(ω), · · · ,ResPn(ω)). Thus,

GC(D,G,a)⊥ = (a−1 ∗ e) · C(D,H), (3)

where a−1 ∗ e = (
ResPi (ω)

a1
, · · · , ResPn (ω)

an
).

The following theorem determines the parameters of GC(D,G,a) [23].
Theorem 2.2: The code GC(D,G,a) has dimension k = deg(G)− g + 1 and minimum distance d ≥ n− deg(G).
From the definition of the generalized algebraic geometry codes we see that curves carrying many rational points may

produce long codes. On the other hand, the number of Fq-rational points of a smooth curve C defined over Fq is bounded by
the well known Hasse-Weil bound:

|#(C(Fq))− (q + 1)| ≤ 2g
√
q,

where g is the geometric genus of C. As a consequence, curves attaining the bound (which are called maximal) are particularly
interesting in coding theory.
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C. Elliptic curves

Let E be an elliptic curve over Fq andO be the point at infinity of E(Fq), where Fq is the algebraic closure of Fq and E(Fq) is
the set of all points on E. For any divisor D ∈ Div(E), we denote D the unique rational point such that D−D−(deg(D)−1)O
is a principal divisor. In fact, if D = m1P1 +m2P2 + · · ·+mnPn, then D = m1P1 ⊕m2P2 ⊕ · · · ⊕mnPn, where ⊕ is the
addition of points on the elliptic curve. For non-negative integer r, let E[r] := {P ∈ E(Fq) : P ⊕ · · · ⊕ P︸ ︷︷ ︸

r

= O}. We refer to

[22] for more details about elliptic curves.

III. GENERAL CONSTRUCTIONS OF LCD CODES FROM ELLIPTIC CURVES

In this section, we consider the construction of LCD codes from elliptic curves and determine the parameters of these LCD
codes. We first present a proposition, which will be used in the following paper.

Proposition 3.1: Let ai ∈ F?q (i = 1, · · · , n) and C be a linear code in Fnq . If C⊥ = e · C′ with e = (a21, · · · , a2n) and
C ∩ C′ = {0}, then, (a · C)⊥ = a · C′ and a · C is complementary dual, where a = (a1, · · · , an).

Proof: From C⊥ = e · C′, one has dimFq (C) + dimFq (C′) = n, and, for any (c1, · · · , cn) ∈ C and (c′1, · · · , c′n) ∈ C′,
a1c1 · a1c′1 + · · ·+ ancn · anc′n = 0. Thus, (a · C)⊥ = a · C′.

Suppose (a1c1, · · · , ancn) ∈ (a · C)⊥ ∩ a · C, where (c1, · · · , cn) ∈ C. Then, for any (c1, · · · , cn) ∈ C, a1c1 · a1c1 + · · ·+
ancn ·ancn = 0. Thus, (a21c1, · · · , a2ncn) ∈ C⊥ and (c1, · · · , cn) ∈ C′. From C∩C′ = {0}, we obtain (c1, · · · , cn) = (0, · · · , 0).
Hence, a · C is complementary dual. This completes the proof.

The following theorem constructs the LCD codes from elliptic curves and determines the corresponding parameters of these
codes.

Theorem 3.2: Let E be an elliptic curve over Fq and G, D = P1 + P2 + · · · + Pn be two divisors over E, where
0 < deg(G) < n. Let ω be a Weil differential such that (w) = G+H −D for some divisor H and Supp(G) ∩ Supp(D) =
Supp(H) ∩ Supp(D) = ∅. Assume that

(1) There is a vector a = (a1, · · · , an) ∈ (F?q)n with ResPi(ω) = a2i ;
(2) deg(g.c.d(G,H)) = 0;
(3) g.c.d(G,H) is not a principal divisor.
Then, GC(D,G,a) is a LCD code with dimension deg(G) and minimum distance d ≥ n − deg(G), and the dual code

GC(D,H,a) of GC(D,G,a) is a LCD code with dimension n− deg(G) and minimum distance d⊥ ≥ deg(G).
Proof: Note that a canonical divisor over an elliptic curve is a principal divisor. Since g.c.d(G,H) is not a principal

divisor and l.m.d(G,H)−D = (G+H −D)− g.c.d(G,H), then l.m.d(G,H)−D is not a principal divisor.
We firstly prove that C(D,G) ∩ C(D,H) = {0}. Suppose that there are some f ∈ L(G) and some g ∈ L(H) such that

f(Pi) = g(Pi) for i = {1, 2, · · · , n}. Consider the following two mutually exclusive cases on h := f − g
1) Case h = 0. One has f ∈ L(G) ∩ L(H). Then, f ∈ L(g.c.d(G,H)). Since g.c.d(G,H) is not a principal divisor, then

f ∈ L(g.c.d(G,H)) = {0} and f = g = 0.
2) Case h 6= 0. One has h ∈ L(l.m.d(G,H) −D) as h(Pi) = 0(i = 1, · · · , n). Since l.m.d(G,H) −D is not a principal

divisor, then h ∈ L(l.m.d(G,H)−D) = {0} and h = 0, which is a contradiction.
Hence, C(D,G) ∩ C(D,H) = {0}. From Equation (3), C(D,G)⊥ = e · C(D,H) with e = (ResP1(ω), · · · ,ResPn(ω)),

and Proposition 3.1, GC(D,G,a) and GC(D,H,a) are complementary dual codes with GC(D,G,a)⊥ = GC(D,H,a). The
dimensions and minimum distances follow from Theorem 2.2.

Remark An interesting result of Cheng [2] says that the minimum distance problem is already NP-hard (under RP-reduction)
for general elliptic curves codes. In [14], Li et al. showed that the minimum distance of algebraic codes from elliptic curves
also has a simple explicit formula if the evaluation set is suitably large (at least 2

3 of the group order). This method proves
that, if n = #D ≥ q+ 2 and 3 < deg(G) < q− 1, then, GC(D,G,a) has the deterministic minimum distance n− deg(G). In
this cases, GC(D,G,a) has parameters [n, deg(G), n− deg(G)], where n = #D. Thus, GC(D,G,a) is an almost MDS code.
Let n ≥ q+ 3. From [11], if 2 ≤ deg(G) ≤ n− (q+ 1) or q+ 1 ≤ deg(G) ≤ n− 2, the elliptic code GC(D,G,a) is optimal.
Hence, many different (perhaps nonequivalent) LCD generalized elliptic optimal codes exist, since many elliptic curves with
more than q + 2 rational points exist.

From Theorem 3.2, we have the following two corollaries.
Corollary 3.3: Let n, r be positive integers with 2 ≤ r ≤ n+1

2 and D = P1 + · · ·+Pn be a divisor such that D 6∈ E[r− 1]
and O, D 6∈ Supp(D). Let G = (r − 1)O + rD and H = (n − r)O − (r − 1)D. Let ω be the Weil differential such that
(ω) = (n− 1)O +D −D. Assume that there is a vector a = (a1, · · · , an) ∈ (F?q)n with ResPi(ω) = a2i . Then, GC(D,G,a)
is a LCD code with dimension 2r− 1 and minimum distance d ≥ n− 2r+ 1, and the dual code GC(D,H,a) of GC(D,G,a)
is a LCD code with dimension n− 2r + 1 and minimum distance d⊥ ≥ 2r − 1.

Proof: Note that G+H−D = (n− 1)O+D−D is a principal divisor. Then, there exists a Weil differential ω such that
(ω) = (n− 1)O+D−D. From D 6∈ E[r− 1], g.c.d(G,H) = (r− 1)O− (r− 1)D is not a principal divisor. This corollary
follows from Theorem 3.2.
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Corollary 3.4: Let Q be a place on E different from O, G = (r · deg(Q))O + rQ, and D = P1 + · · ·+ Pn be a principal
divisor, where 0 < 2r · deg(Q) < n, Q⊕ · · · ⊕Q︸ ︷︷ ︸

r

6= O, and Q,O 6∈ Supp(D). Let ω be the Weil differential such that

(ω) = nO −D. Assume that there is a vector a = (a1, · · · , an) ∈ (F?q)n with ResPi(ω) = a2i . Then, GC(D,G,a) is a LCD
code with dimension 2r · deg(Q) and minimum distance d ≥ n− 2r · deg(Q), and the dual code GC(D,H,a) of GC(D,G,a)
is a LCD code with dimension n−2r ·deg(Q) and minimum distance d⊥ ≥ 2r ·deg(Q), where H = (n− r ·deg(Q))O− rQ.

Proof: Note that (ω) = G + H − D = nO − D and g.c.d(G,H) = (r · deg(Q))O − rQ. From Q⊕ · · · ⊕Q︸ ︷︷ ︸
r

6= O,

g.c.d(G,H) is not a principal divisor. The corollary follows from Theorem 3.2.

IV. EXPLICIT CONSTRUCTION OF LCD CODES FROM ELLIPTIC CURVES

The previous results presented in Section III are of significance if there are interesting examples of elliptic curves and
divisors G,H,D satisfying the properties assumed in Theorem 3.2. Hence, in this section we present general examples, where
the assumptions of Theorem 3.2 are satisfied.

Let q = 2m and E(0) be an elliptic curve defined by the equation

y2 + y = x3 + bx+ c, (4)

where b, c ∈ Fq . The point at infinity is denoted by O. Let S be the set of x-components of the affine points of E(0) over Fq ,
that is,

S := {α ∈ Fq : there is β ∈ Fq such that β2 + β = α3 + bα+ c}.

For any α ∈ S, there exactly exist two points with x-component α. Denote these two points corresponding to α by P+
α and

P−α . Then the set E(0)(Fq) of all rational points of E(0) over Fq is E(0)(Fq) = {P+
α : α ∈ S} ∪ {P−α : α ∈ S} ∪ {O}. The

following Lemma can be found in [8].
Lemma 4.1: Let s be a positive integer, {α1, · · · , αs} be a subset of S with cardinality s, and D =

∑s
i=1(P+

αi +P−αi). Let
h =

∏s
i=1(x+ αi) and ω = dx

h . Then, (ω) = 2s · O −D and

ResP+
αj

(ω) = ResP−αj
(ω) =

1∏s
i=1,i6=j(αj + αi)

,

for any j ∈ {1, 2, · · · , s}.
The following result is a direct consequence of Corollary 3.4 and Lemma 4.1.

Theorem 4.2: Let s be a positive integer, {α0, α1, · · · , αs} be a subset of S with cardinality s + 1, D = (P+
α1

+ P−α1
) +

· · ·+ (P+
αs +P−αs) and G = rO+ rP+

α0
, where 0 < r < s and P+

α0
6∈ E(0)[r]. Let bj = 1∏s

i=1,i 6=j(α
2m−1
j +α2m−1

i )
(j = 1, · · · , s)

and a = (b1, b1, · · · , bs, bs). Then, GC(D,G,a) is a LCD code with dimension 2r and minimum distance d ≥ 2(s− r), and
the dual code GC(D,H,a) of GC(D,G,a) is a LCD code with dimension 2(s − r) and minimum distance d⊥ ≥ 2r, where
H = (2s− r)O − rP+

α0
.

Example 1: Let q = 24, Fq = F2[ρ] with ρ4 + ρ + 1 = 0, and E(0) be the elliptic curve defined by y2 + y = x3 + ρ3.
Let P+ = (ρ, 0) , P− = (ρ, 1) and D = E(0)(Fq)\{O, P+, P−}. Then 4P+ 6= O and #D = 22. Let G = 4O + 4P+

and H = 18O − 4P+. Then, GC(D,G,a) in Theorem 4.2 is a LCD code with parameters [22, 8, 14], and the dual code
GC(D,H,a) in Theorem 4.2 of GC(D,G,a) is a LCD code with parameters [22, 14, 8], which is verified by MAGMA.

Corollary 4.3: Let N = #E(0)(Fq) and s be a positive integer, {α0, α1, · · · , αs} be a subset of S with cardinality s+1, D =
(P+
α1

+P−α1
)+ · · ·+(P+

αs +P−αs) and G = rO+rP+
α0

, where 0 < r < s and g.c.d(r,N) = 1. Let bj = 1∏s
i=1,i 6=j(α

2m−1
j +α2m−1

i )

(j = 1, · · · , s) and a = (b1, b1, · · · , bs, bs). Then, GC(D,G,a) is a LCD code with dimension 2r and minimum distance
d ≥ 2(s− r), and the dual code GC(D,H,a) of GC(D,G,a) is a LCD code with dimension 2(s− r) and minimum distance
d⊥ ≥ 2r, where H = (2s− r)O − rP+

α0
.

Proof: From g.c.d(r,N) = 1, there exist integers k1 and k2 such that k1r+k2N = 1. Then, (k1r)P
+
α0

= P+
α0
	(k2N)P+

α0
=

P+
α0
6= O. Thus, P+

α0
6∈ E(0)[r]. This corollary follows from Theorem 4.2.

Remark The following Table I lists the numbers of rational points of some elliptic curves over F2m [17]. For general elliptic
curves over a finite field, we can use the Schoof’s algorithms [20] to count the number of rational points.

Theorem 4.4: Let s be a positive integer, {α1, · · · , αs} be a subset of S with cardinality s, D = P−α1
+ (P+

α2
+P−α2

) + · · ·+
(P+
αs + P−αs) and G = (r + 1)O + rP+

α1
, such that 0 ≤ r < s − 1 and P+

α1
6∈ E(0)[r + 1]. Let bj = 1∏s

i=1,i 6=j(α
2m−1
j +α2m−1

i )

(j = 1, · · · , s) and a = (b1, b2, b2 · · · , bs, bs). Then, GC(D,G,a) is a LCD code with dimension 2r+1 and minimum distance
d ≥ 2(s− r − 1), and the dual code GC(D,H,a) of GC(D,G,a) is a LCD code with dimension 2(s− r − 1) and minimum
distance d⊥ ≥ 2r + 1, where H = (2s− r − 1)O − (r + 1)P+

α1
.
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TABLE I
THE NUMBERS OF RATIONAL POINTS OF ELLIPTIC CURVES OVER Fq(q = 2m)

Elliptic Curve E(0) m #E(F2m )

y2 + y = x3
odd m

m ≡ 0 mod 4
m ≡ 2 mod 4

q + 1
q + 1− 2

√
q

q + 1 + 2
√
q

y2 + y = x3 + x
m ≡ 1, 7 mod 8
m ≡ 3, 5 mod 8

q + 1 +
√
2q

q + 1−
√
2q

y2 + y = x3 + x+ 1
m ≡ 1, 7 mod 8
m ≡ 3, 5 mod 8

q + 1−
√
2q

q + 1 +
√
2q

y2 + y = x3 + δx (Trm1 (δ) = 1) even m q + 1

y2 + y = x3 + ω (Trm1 (ω) = 1)
m ≡ 0 mod 4
m ≡ 2 mod 4

q + 1 + 2
√
q

q + 1− 2
√
q

Proof: From Lemma 4.1, (ω) = G+H −D, where ω = 1∏s
i=1(x+αi)

dx. Note that g.c.d(G,H) = (r+ 1)O− (r+ 1)P+
α1

.
This theorem follows from P+

α1
6∈ E(0)[r + 1] and Theorem 3.2.

Example 2: Let q = 24, Fq = F2[ρ] with ρ4 + ρ+ 1 = 0 and E(0) be the elliptic curve defined by y2 + y = x3 + ρ3. Let
P+ = (ρ, 0) and D = E0(Fq)\{O, P+}. Then 4P+ 6= O and #D = 23. Let G = 4O + 3P+ and H = 20O − 4P+. Then,
GC(D,G,a) in Theorem 4.4 is a LCD code with parameters [23, 7, 16], and the dual code GC(D,H,a) in Theorem 4.4 of
GC(D,G,a) is a LCD code with parameters [23, 16, 7], which is verified by MAGMA.

Corollary 4.5: Let N = #E(0)(Fq) and r, s be positive integers, where 0 ≤ r < s − 1 and g.c.d(r + 1, N) = 1. Let
{α1, · · · , αs} be a subset of S with cardinality s, D = P−α1

+ (P+
α2

+P−α2
) + · · ·+ (P+

αs +P−αs) and G = (r+ 1)O+ rP+
α1

. Let
bj = 1∏s

i=1,i 6=j(α
2m−1
j +α2m−1

i )
(j = 1, · · · , s) and a = (b1, b2, b2 · · · , bs, bs). Then, GC(D,G,a) is a LCD code with dimension

2r+1 and minimum distance d ≥ 2(s− r−1), and the dual code GC(D,H,a) of GC(D,G,a) is a LCD code with dimension
2(s− r − 1) and minimum distance d⊥ ≥ 2r + 1, where H = (2s− r − 1)O − (r + 1)P+

α1
.

Proof: The result follows from Theorem 4.4 and similar arguments used in the proof of Corollary 4.3.
Theorem 4.6: Let r, s be integers with 0 ≤ r < s−2

2 , {α0, α1, · · · , αs} be a subset of S with cardinality s + 1, D =∑s
i=1(P+

αi + P−αi) and G = (2r + 3) · O + r · (P+
α0

+ P−α0
) + P+

α0
. Let bj = 1∏s

i=0,i 6=j(α
2m−1
j +α2m−1

i )
(j = 1, · · · , s) and a =

(b1, b1, b2, b2 · · · , bs, bs). Then, GC(D,G,a) is a LCD code with dimension 4(r+1) and minimum distance d ≥ 2s−4(r+1),
and the dual code GC(D,H,a) of GC(D,G,a) is a LCD code with dimension 2s−4(r+1) and minimum distance d⊥ ≥ 4(r+1),
where H = (2s− 2r − 1) · O − (r + 2) · (P+

α0
+ P−α0

) + P−α0
.

Proof: Let h =
∏s
i=0(x + αi) and ω = 1

hdx. Then, from Lemma 4.1, (ω) = G + H − D. Note that g.c.d(G,H) =
(2r+ 3)O− (r+ 2)(P+

α0
+P−α0

) +P−α0
. From P+

α0
⊕P−α0

= O, g.c.d(G,H) ∼ P−α0
−O. Thus, g.c.d(G,H) is not a principal

divisor. This theorem follows from Theorem 3.2.
Example 3: Let q = 24, Fq = F2[ρ] with ρ4+ρ+1 = 0 and E(0) be the elliptic curve defined by y2+y = x3+ρ3. Let P+ =

(ρ, 0) , P− = (ρ, 1) and D = E0(Fq)\{O, P+, P−}. Then #D = 22. Let G = 3O+P+ and H = 21O−2(P+ +P−)+P−.
Then, GC(D,G,a) in Theorem 4.6 is a LCD code with parameters [22, 4, 18], and the dual code GC(D,H,a) in Theorem
4.6 of GC(D,G,a) is a LCD code with parameters [22, 18, 4], which is verified by MAGMA. From the Remark below3.2,
both GC(D,G,a) and GC(D,H,a) are optimal.

V. LCD CODES FROM GENERAL ALGEBRAIC CURVES

In this section we consider the construction of LCD codes from any algebraic curves, present a construction mechanism
of LCD codes from algebraic geometry codes, and give concrete construction of LCD codes from hyperelliptic curves and
Hermitian curves.

Two theorems on constructing LCD codes from algebraic curves are given below.
Theorem 5.1: Let C be a smooth projective curve of genus g over Fq and G, D = P1 + P2 + · · · + Pn be two divisors

over C, where 2g − 2 < deg(G) < n. Let ω be a Weil differential such that (w) = G + H − D for some divisor H and
Supp(G) ∩ Supp(D) = Supp(H) ∩ Supp(D) = ∅. Assume that

(1) There is a vector a = (a1, · · · , an) ∈ (F?q)n with ResPi(ω) = a2i ;
(2) g.c.d(G,H) is a non-special divisor of degree g − 1.
Then, GC(D,G,a) is a LCD code with dimension deg(G)+1−g and minimum distance d ≥ n−deg(G), and the dual code

GC(D,H,a) of GC(D,G,a) is a LCD code with dimension n−deg(G)−1+g and minimum distance d⊥ ≥ deg(G)+2−2g.
Proof: We first prove that C(D,G) ∩ C(D,H) = {0}. Suppose that there exist some f ∈ L(G) and g ∈ L(H) such that

f(Pi) = g(Pi) for i = {1, 2, · · · , n}. Consider the following two mutually exclusive cases on h := f − g
1) Case h = 0. One has f ∈ L(G) ∩ L(H) and f ∈ L(g.c.d(G,H)). Since g.c.d(G,H) is a non-special divisor,

L(g.c.d(G,H)) = {0} and f = g = 0.
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2) Case h 6= 0. One has h ∈ L(l.m.d(G,H)−D) as h(Pi) = 0(i = 1, · · · , n). Let k = l(l.m.d(G,H)−D)−l(g.c.d(G,H)).
From g.c.d(G,H) = (ω)− (l.m.d(G,H)−D) and Theorem 2.1,

k =l(l.m.d(G,H)−D)− l((ω)− (l.m.d(G,H)−D))

=deg(l.m.d(G,H)−D) + 1− g
=deg((ω)− g.c.d(G,H)) + 1− g
=0.

From L(g.c.d(G,H)) = {0}, L(l.m.d(G,H)−D) = {0}. Thus, h = 0, which is a contradiction.
Hence, C(D,G) ∩ C(D,H) = {0}. From Equation (3), C(D,G)⊥ = e · C(D,H) with e = (ResP1

(ω), · · · ,ResPn(ω))
and Proposition 3.1, GC(D,G,a) and GC(D,H,a) are complementary dual codes with GC(D,G,a)⊥ = GC(D,H,a). The
dimensions and minimum distances follow from Theorem 2.2.

Remark In [1], S. Ballet and D. Le Brigand proved that if #C(Fq) ≥ g + 1, there exists a non-special divisor such that
deg(G) = g − 1 and Supp(G) ⊂ C(Fq). Then, the existence of non-special divisors of degree g − 1 is often clear since the
involved algebraic curves have many rational points. However, the problem lies in their effective determination. Moreover,
actually almost all the divisors with degree g − 1 are non-special (the terminology almost all means all but finitely many).

Example 4: Let q = 2 and C be the projective curve of genus 1 defined by Y 2Z + Y Z2 = X3 over F4 = {0, 1, ρ, ρ2}.
Then, C(F4) = {O, Q, P1, · · · , P7} = {(0 : 1 : 0), (0 : 0 : 1), (0 : 1 : 1), (ρ : ρ : 1), (ρ : ρ2 : 1), (ρ2 : ρ : 1), (ρ2 : ρ2 :
1), (1 : ρ : 1), (1 : ρ2 : 1)}. Let D = {P1, · · · , P7}, G = 2O + Q and H = 6O − 2Q. Then, g.c.d(G,H) = 2O − 2Q is
non-special, ( Z4

X4+Z3X d
X
Z ) = G + H −D and ResPi(

Z4

X4+Z3X d
X
Z ) = 1 for i ∈ {1, · · · , 7}. Note that (XZ ) = Q − 2O + P1

and (Y+Z
X ) = −Q − O + 2P1. Thus, {1, XZ ,

Y+Z
X } is a basis of L(2O + Q). Evaluate the functions in {1, XZ ,

Y+Z
X } at the

places {P1, · · · , P7}. One obtains the generator matrix of C(D,G) 1 1 1 1 1 1 1
0 ρ ρ ρ2 ρ2 1 1
0 ρ 1 1 ρ2 ρ2 ρ


Moreover, C(D,G) is a LCD code with parameters [7, 3, 4], which is verified by MAGMA. This code is optimal.

Theorem 5.2: Let C be a smooth projective curve of genus g over Fq and G, D = P1 + P2 + · · · + Pn be two divisors
over C, where 2g − 2 < deg(G) < n. Let ω be a Weil differential such that (w) = G + H − D for some divisor H and
Supp(G) ∩ Supp(D) = Supp(H) ∩ Supp(D) = ∅. Assume that

(1) ResPi(ω) = ResPj (ω) for 1 ≤ i < j ≤ n;
(2) g.c.d(G,H) is a divisor of degree g − 1.
Then, C(D,G) is a LCD code if and only if g.c.d(G,H) is non-special.

Proof: Let ResPi = c for 1 ≤ i ≤ n. From Equation (3), C(D,G)⊥ = (c, · · · , c) · C(D,H) = C(D,H).
Suppose that g.c.d(G,H) is non-special. C(D,G) is a LCD code from similar arguments used in proving Theorem 5.1.
Suppose that C(D,G) is a LCD code. If g.c.d(G,H) is special. Then, l(g.c.d(G,H)) > 0. Let 0 6= f ∈ L(g.c.d(G,H)) =

L(G)∩L(H). Thus, (f(P1), · · · , f(Pn)) ∈ C(D,G)∩C(D,H). Note that (f(P1), · · · , f(Pn)) 6= (0, · · · , 0), which contradicts
C(D,G) ∩ C(D,H) = {0}. This completes the proof.

Corollary 5.3: Let C be the projective line over Fq ,O be the point at infinity, P be the original point and D = C(Fq)\{O, P}.
Let G = rO + rP with 0 < r ≤ q−2

2 . Then, C(D,G) is a maximum distance separable (MDS) LCD code over Fq with
parameters [q − 1, 2r + 1, n− 2r]. Moreover, C(D,G) has generator matrix

1 1 1 · · · 1
1 ρ1 ρ2 · · · ρq−2

1 ρ−1 ρ−2 · · · ρ−(q−2)

...
...

...
. . .

...
1 ρi·1 ρi·2 · · · ρi·(q−2)

1 ρ−i·1 ρ−i·2 · · · ρ−i·(q−2)

...
...

...
. . .

...
1 ρr·1 ρr·2 · · · ρr·(q−2)

1 ρ−r·1 ρ−r·2 · · · ρ−r·(q−2)


,

where ρ ∈ Fq is a primitive element.
Proof: Let H = (q − r − 2)O − (r + 1)P . Then, g.c.d = rO − (r + 1)P is non-special and (ω) = G + H − D with

ω = 1
xq−xdx. Note that ResQ(ω) = −1 for any Q ∈ Supp(D). Form Theorem 5.2, C(D,G) is a LCD code. The parameters

of C(D,G) follows from Theorem 2.2 and the Singleton bound. Observe that {xi : −r ≤ i ≤ r} is a base of L(rO + rP ).
This completes the proof.
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A. LCD codes from hyperelliptic curves

Let q = 2m and C be the curve over Fq2 defined as

y2 + y = xq+1.

This curve has genus g = q
2 . For any α ∈ Fq2 , there exactly exist two rational points P+

α , P
−
α with x-component α. Let O be

the point at infinity. Then, the set C(Fq2) of all rational points of C equal {P+
α : α ∈ Fq2}∪ {P−α : α ∈ Fq2}∪ {O}. Thus, C

has exactly 1 + 2q2 = 1 + q2 + 2g
√
q2 rational points, which attains the well-known Hasse-Weil bound. Let ω = 1

xq2+x
dx,

then

(ω) = 2(q2 − 1 +
q

2
) · O −

∑
α∈Fq2

(P+
α + P−α ) and ResP+

α
(ω) = ResP−α (ω) = 1, (5)

for any α ∈ Fq2 .
Theorem 5.4: Let q ≥ 4, P be an affine point of C, D = C(Fq2)\{O, P} and G = (r + q

2 )O + rP , such that q
4 ≤ r ≤

q2 − q
4 − 1 and (r + q

2 )O − (r + 1)P is a non-special divisor. Then, C(D,G) is a LCD code with dimension 2r + 1 and
minimum distance d ≥ 2q2− q

2 − 2r− 1, and the dual code C(D,H) of C(D,G) is a LCD code with dimension 2(q2− r− 1)
and minimum distance d⊥ ≥ 2r − q

2 + 2, where H = (2q2 + q
2 − r − 2)O − (r + 1)P .

Proof: From Equation (5), (ω) = G+H −D, where ω = 1
xq2+x

dx. Observe that g.c.d(G,H) = (r + q
2 )O − (r + 1)P .

This theorem follows from (r + q
2 )O − (r + 1)P being a non-special divisor and Theorem 5.1.

Example 5: Let q = 22 and C be the genus 2 hyperelliptic curve defined by y2 + y = xq+1 over Fq2 . Let P = (0, 0) and
D = C(Fq2)\{O, P}. Then 9O − 8P is non-special and #D = 31. Let G = 9O + 7P and H = 25O − 8P . Then, C(D,G)
in Theorem 5.4 is a LCD code with parameters [31, 15], and the dual code C(D,H) in Theorem 5.4 of C(D,G) is a LCD
code with parameters [31, 16], which is verified by MAGMA.

Theorem 5.5: Let q ≥ 4,
∑t
i=1 ni = g with ni > 0 and

∑t
i=1 ri ≤

1
4 (2q2 − 3

2q − 4t − 4) with ri ≥ 0. Let {α1, · · · , αt}
be a subset of Fq2 with cardinality t, D = C(Fq2)\{O, P+

α1
, P−α1

, · · · , P+
αt , P

−
αt} and G = (2(t +

∑t
i=1 ri) + q − 1) · O +∑t

i=1 ri ·(P+
αi +P−αi)+

∑t
i=1 ni ·P+

αi . Then, C(D,G) is a LCD code with dimension 4
∑t
i=1 ri+2t+q and minimum distance

d ≥ 2q2−4
∑t
i=1 ri−4t− 3

2q+1, and the dual code C(D,H) of C(D,G) is a LCD code with dimension 2q2−4
∑t
i=1 ri−4t−q

and minimum distance d⊥ ≥ 4
∑t
i=1 ri + 2t + 1

2q + 1, where H = (2q2 − 2(t +
∑t
i=1 ri) − 1) · O −

∑t
i=1(ri + ni + 1) ·

(P+
αi + P−αi) +

∑t
i=1 ni · P−αi .

Proof: From Equation (5), (ω) = G+H −D, where ω = 1
xq2+x

dx. Note that g.c.d(G,H) = (2(t+
∑t
i=1 ri) + q − 1) ·

O −
∑t
i=1(ri + ni + 1)(P+

αi + P−αi) +
∑t
i=1 niP

−
αi . From P+

αi + P−αi ∼ 2O, we have g.c.d(G,H) =
∑t
i=1 niP

−
αi −O. Since∑t

i=1 niP
−
αi is a reduced divisor, l(

∑t
i=1 niP

−
αi) = 1. Thus l(g.c.d(G,H)) = l(

∑t
i=1 niP

−
αi −O) = 0. This theorem follows

from Theorem 5.1.

Remark From (x + αi) = P+
αi + P−αi − 2O, G = (

∏t
i=1(x + αi)

ri) + (4
∑t
i=1 ri + 2t + q − 1) · O +

∑t
i=1 niP

+
αi . Thus,

L(G) = 1∏t
i=1(x+αi)

ri
L((4

∑t
i=1 ri + 2t+ q− 1) · O+

∑t
i=1 niP

+
αi). From the similar discussion as above, one gets L(H) =∏t

i=1(x + αi)
ri+ni+1L((2q2 − q −

∑t
i=1 ri − 4t − 1) · O +

∑t
i=1 niP

−
αi). Let D = {P+

β1
, P−β1

, · · · , P+
βq2−t

, P−βq2−t
}. Then,

C(D,G) = GC(D, (4
∑t
i=1 ri + 2t + q − 1) · O +

∑t
i=1 niP

+
αi ,a) and C(D,H) = GC(D, (2q2 − q −

∑t
i=1 ri − 4t − 1) ·

O +
∑t
i=1 niP

−
αi ,b), where a = (a1, a1, · · · , aq2−t, aq2−t) and b = (b1, b1, · · · , bq2−t, bq2−t), aj = 1∏t

i=1(βj+αi)
ri

, and

bj =
∏t
i=1(βj + αi)

ri+ni+1.

Example 6: Let q = 23 and C be the genus 4 hyperelliptic curve defined by y2 + y = xq+1 over Fq2 . Let P+ = (0, 0)
, P− = (0, 1) and D = C(Fq2)\{O, P+, P−}. Then #D = 126. Let G = 19O + 5(P+ + P−) + 4P+ and H = 115O −
10(P+ + P−) + P−. Then, C(D,G) in Theorem 5.5 is a LCD code with parameters [126, 30], and the dual code C(D,H)
in Theorem 5.5 of C(D,G) is a LCD code with parameters [126, 96], which is verified by MAGMA.

Remark All constructions presented in Theorem 5.4 and Theorem 5.5 can be directly generalized to any hyperelliptic curves.

B. LCD codes from Hermitian curves

Let q be a power of any prime and Cas be the Hermitian curve over Fq2 defined by

yq + y = xq+1.

Then Cas is also an Artin-Schreier curve. The curve Cas has genus g = 1
2q(q − 1), and for every α ∈ Fq2 the element x− α

has q zeros of degree one in Cas. Except the point O at infinity, all rational points of Cas are obtained in this way. One easily
checks that the Hasse-Weil bound is attained. Let ω = 1

xq2−x
dx, then

(ω) = (n+ 2g − 2)O −D,
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where D = Cas(Fq2)\{O} and n = #D = q3. Then, ResP (ω) = −1. We refer to [23] for more details about Hermitian
curves.

Theorem 5.6: Let Cad, g,O, D and ω be defined as before. Let G = (r · deg(P ) + g − 1) · O + r · P , where P is a place
of Cas with degree more than 1 and r is a positive integer whit r · deg(P ) ≤ n

2 . Then, C(D,G) is a LCD codes if and only
if (r · deg(P ) + g − 1) · O − r · P is non-special.

Proof: Let H = (n−r ·deg(P )+g−1) ·O−r ·P . Then g.c.d(G,H) = (r ·deg(P )+g−1) ·O−r ·P , (ω) = G+H−D
and ResQ(ω) = −1 for any Q ∈ Supp(D). From Theorem 5.2, this theorem follows.

Example 7: Let q = 3 and C be the genus 3 Hermitian curve defined by yq + y = xq+1 over Fq2 . Let P be the degree 3
place at (β, ρ2β2 + β − 1) , where ρ ∈ F9, β ∈ F93 , ρ2 − ρ− 1 = 0, and β3 + ρβ2 − β + ρ2 = 0. Let D = C(Fq2)\{O} and
G = 8O + 2P . Then, #D = 27 and 8O − 2P is non-special. C(D,G) in Theorem 5.6 is a LCD code with parameters [27,
12], which is verified by MAGMA.

VI. CONCLUSION

This paper is devoted to the construction of particular AG complementary dual (LCD) codes which can be resistant against
side-channel attacks (SCA). We firstly provide a construction scheme for obtaining LCD codes from elliptic curves and present
some explicit LCD codes from elliptic curves, which contain some infinite class of optimal codes with parameters meeting
Griesmer bound on linear codes. All codes constructed from elliptic curve are MDS or almost MDS. We also introduce
a construction mechanism for obtaining LCD codes from any algebraic curve and derive some explicit LCD codes from
hyperelliptic curves and Hermitian curves. In a future work, we will study the resistance of algebraic geometry LCD codes to
SCA.
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