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Abstract

Side-channel analysis and fault injection attacks are two typical threats to cryptographic
implementations, especially in modern embedded devices. Thus there is an insistent de-
mand for dual side-channel and fault injection protections. As it is known, masking scheme
is a kind of provable countermeasure against side-channel attacks. Recently, inner prod-
uct masking (IPM) was proposed as a promising higher-order masking scheme against
side-channel analysis, but not for fault injection attacks. In this paper, we devise a new
masking scheme named IPM-FD. It is built on IPM, which enables fault detection. This
novel masking scheme has three properties: the security orders in the word-level probing
model, bit-level probing model, and the number of detected faults. IPM-FD is proven se-
cure both in the word-level and in the bit-level probing models, and allows for end-to-end
fault detection against fault injection attacks.

Furthermore, we illustrate its security order by interpreting IPM-FD as a coding prob-
lem then linking it to one de�ning parameters of linear code, and show its implementation
cost by applying IPM-FD to AES-128.

1 Introduction

With the advent of Internet of Things (IoT), more and more cryptographic libraries are im-
plemented in software. Now, IoT objects are, most of the time, not made of secure hardware.
Therefore, it is important for the software to protect itself in a sound manner. In this article, we
assume that the implementation is free from con�guration and coding bugs. Still, in this case,
attackers can leverage two techniques to extract information: side-channel and fault injection
analyses. Indeed, it is known that a single faulty encryption in AES can fully disclose 128 bits
of the key [1]. It can be noted that some combined side-channel and fault analyses exist against
protected implementations [8, 7].

On one hand, protections against Side-channel analysis aims at reducing the signal-to-noise
ratio (see de�nition in [14, � 4.3.2]) an attacker can get. One option is to balance the leakage,
technique which is used to linearize the control �ow. For instance, cache-timing attacks can be
alleviated by removing conditional opcodes whose condition is sensitive and sensitive pointer
dereferencing. Besides, we assume Meltdown and ZombieLoad attack categories are irrelevant as
the code we are interested in is baremetal. Still, there is the possibility of sensitive value leakage,
which is properly addressed by randomization (masking [14, Chap. 9]). Indeed, sensitive values
leak through a non-injective and noisy channel, thence single trace attacks are unpractical.

On the other hand, protections against fault injection attacks boil down to detection of
errors, using either spacial, temporal, or information redundancy. Other techniques rely on
invariant checking, such as idempotence of encryption composed by decryption.
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In this paper, we present a joint countermeasure to both attacks, which is more e�cient
than two countermeasures piled one on top of each other.

State-of-the-art. In the scienti�c literature, early countermeasures against both side-channel
and fault injection attacks have been designed in hardware. Several gate-level logic styles have
been introduced, in particular dual-rail with precharge logic, aiming at balancing the leakage.
Namely, redundant encodings, where each bit a is represented as a pair of bits (af , at), such
that af = ¬at = a during computation evaluation phase. Owing to this redundancy, the total
number of bits set to 1 is unchanged (if in addition, the evaluation phase is interleaved with
a precharge phase, the Hamming distance between two states is also constant, irrespective of
the sensitive data manipulated). Besides, the redundant encoding af = ¬at = a allows for
computation checks, as in evaluation phase, af = at (two con�gurations, namely (0, 0) and
(1, 1)) are forbidden. Starting from Wave Dynamic Di�erential Logic (WDDL [14, Chap. 7]),
other improvements have been successively introduced (MDLP, iMDPL [11], ParTI [19], etc.)
Also, some exotic styles have been proposed (asynchronous logic [16], adiabatic logic [15], etc.).
All this corpus requires a hardware support.

In this paper, we target software-level countermeasures. We build upon the higher-order
side-channel countermeasure known as IPM [2] to enrich it to detect faults injected during the
computation.

Contributions. We devise an end-to-end fault-detection scheme which operates from within
a provable high-order multivariate masking scheme. Practically, we enhance IPM scheme to
enable end-to-end side-channel and fault injection detection, while keeping security proofs in
the probing security model. Furthermore, we quantify the impact of both side-channel and
fault detection on a complete AES cipher.

Outline. The rest of this paper is organized as follows. Sec. 2 introduce two typical schemes
as the state-of-the-art of countermeasures. Our novel protection is presented in Sec. 3, with
security analysis and optimal code selection in Sec. 4. The practical performance evaluation is
presented in Sec. 5. Finally, Sec. 6 concludes the paper and opens some perspectives.

2 State-of-the-art on side-channel & fault protection

Side-channel protections come in two �avors:

• Inner Product Masking (IPM) [2] is a word-oriented (e.g., byte-oriented) masking scheme,
equipped with universal operations (namely, addition and multiplication). It is optimized
to resist attacks at both word-level and bit-level probing model, which is suitable for
computing cryptographic algorithms that are subject to high-order side-channel analysis.

• Direct Sum Masking (DSM) [5] is a masking scheme which allows for concurrent side-
channel and fault injection protection. It expresses the masking as the two encodings of
the secret in a code C, and masks in a code D, respectively. This allows to recover the
information by decoding from C and to check the masks by decoding from D.

These two protections are presented, one after the other, in this section.

2
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2.1 Inner Product Masking

2.1.1 Notations

Computations are carried out in characteristic two �nite �elds: F2 for bits and K for larger
�elds. In practice K can be F2l for some l, e.g., l = 8 for AES, and l = 4 for PRESENT. The
elements from K are termed words, and they are also referred to as bytes when l = 8 and to
nibbles when l = 4. We denote + the addition in characteristic two �eld K, which is bitwise
XOR. Recall that the subtraction is the same operation as the addition in K. Elements of F2

are denoted as {0, 1}, and elements of F2l (as words) are represented as polynomials. In this
paper, we use F24

∼= F2[α]/〈α4 +α+ 1〉, and F28
∼= F2[α]/〈α8 +α4 +α3 +α+ 1〉 (that of AES).

We recall that linear codes are spacevectors, characterized by their base �eld K, their length
n and their dimension k. In addition, linear codes have parameters traditionally denoted as
[n, k, d], where d is the minimum distance. The dual of a linear code D is the linear code D⊥

whose codewords are orthogonal to all codewords of D. The dual distance d⊥ of a code D
happens to be equal to the minimum distance of D⊥ [13].

Let n be the number of shares in IPM, and the coe�cient vector in IPM is ~L =
(L1, L2, . . . , Ln) where L1 = 1 for performance reason [2, � 1.2].

De�nition 1 (IPM data representation). A word of secret information X ∈ K is represented
in IPM as a tuple of n �eld elements:

~Z = (X +

n∑
i=2

LiMi,M2, . . . ,Mn) = XG + ~MH (1)

where ~M = (M2,M3, . . . ,Mn) is the mask materials, G and H are generating matrices of linear
codes C and D, respectively, as showed below.

G =
(

1 | 0 0 . . . 0
)
∈ K1×n (2)

H =


L2 | 1 0 . . . 0
L3 | 0 1 . . . 0
... | 0 0

. . . 0
Ln | 0 0 . . . 1

 ∈ K(n−1)×n. (3)

The secret information X can be demasked by inner product between two vectors as:
X = 〈~L, ~Z〉 =

∑n
i=1 LiZi. Finally, we introduce some handy subset notations. Let ~Z =

(Z1, . . . , Zn) = (Zi)i∈{1,...,n} a vector. We have:

~ZI = (Zi)i∈I for I ⊆ {1, . . . , n}.

For instance, Z{i}∪{k+1,...,n}, for 1 ≤ i ≤ k ≤ n, represents the (n− k+ 1) vector of coordinates
(Zi, Zk+1, . . . , Zn).

2.1.2 Security order regarding side-channel analysis

The security of IPM is stated in the probing model [10]: the security order is the maximum
number of shares which are independent to masked information. We clarify word-level and
bit-level security orders as follows:

3
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• Word-level (l-bit) security order dw: since many devices perform computation on
word-level data, especially on embedded devices byte-level operations are very common.
In this paper, We also present instances for 4-bit (nibble) variables for adopting IPM to
protect implementation of lightweight cipher like PRESENT, Simon and Speck, etc.

• Bit-level security order db: in practice, each bit of sensitive variable can be investigated
independently or/and several bits can be evaluated jointly. We consider here the number
of bits that can be probed by attackers, which is consistent with the bit-level probing
model proposed by Poussier et al. [17].

The main advantage of IPM is the higher bit-level security order than Boolean masking,
which is called �Security Order Ampli�cation� in [21]. It has been proven in [17] that side-
channel resistance is directly connected to the dual distance d⊥D of the code D generated by H.
Precisely, the security order t of IPM is equal to t = d⊥D − 1 [17].

The dual distance of linear code D is equal to the minimum distance of the dual code D⊥.
It is easy to see that the later has dimension 1 and is generated by 1× n matrix:

H⊥ =
(
1 L2 . . . Ln

)
. (4)

In order to investigate the bit-level security, the de�nition of expansion is introduced as follows.

De�nition 2 (Code Expansion). By using sub-�eld representation, the elements in K = F2l

are decomposed into F2, we have:

Sub�eldRepresentation : (1, L2, . . . , Ln)2l −→ (Il,L2, . . . ,Ln)2, (5)

where Il is the l × l identity matrix in F2 and Li (2 ≤ i ≤ n) are l × l identity matrices.

To derive the matrices, we can use that F2l is a �eld extension of F2, and given
an irreducible polynomial P over F2 and denoting each element a ∈ F2l as

∑l−1
i=0 aiα

i [
mod P (X) ], replace a by (a0, . . . , al−1). Under the computer algebra system Magma [20], P is
DefiningPolynomial(F2l) and D

′ is SubfieldRepresentationCode(D). If D has parameters
[n, k, d]2l , then D

′ has parameters [nl, kl, d′]2, where d
′ ≥ d.

At word level, we notice that the dual distance of D is equal to n as long as ∀i, Li 6= 0. As
a result, word-level security orders of IPM is dw = n − 1 [2]. In addition, security order db at
the bit-level of IPM is equal to the dual distance of the code generated by the expansion of D
from F2l to F2. A typical example of IPM codes matrices G = (1, 0) and H = (L2, 1) in F28 is
given in Fig. 1. The security order at word (byte) level is dw = n − 1 = 1 and at bit level is
db = 3 because the dual code of D = span(H) is generated by (1, L2), which, after projection
in F2, has parameters [16, 8, 4]2.

Moreover, addition and multiplication are proven to be t = (n−1)-order secure at word-level
in [3] using t-SNI property [4], thus the word-level security order is maintained by composition.
Still, when a variable is reused, caution must be taken where a refresh algorithm is always
adopted to avoid dependence. The refresh operation allows to decorrelate two copies of a
variable that need to be used at two places (to avoid side-channel �aws as put forward in [9]).
However, IPM cannot detect faults since no redundancy is inserted to the coding.

2.2 Direct Sum Masking

Direct sum masking has been originally introduced as Orthogonal Direct Sum Masking
(ODSM [5]). The secret ~X is represented as a bitvector in Fl

2. It is encoded using gener-

ating matrix G (of size l×nl in F2) as a word in Fnl
2 . Some random mask ~M , drawn uniformly

4
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Figure 1: Dimensions (typical) of IPM encodings, for n = 2, on l = 8 bits

in F(n−1)l
2 is encoded with matrix H (of size (n− 1)l × nl). After masking the secret with the

mask materials, one gets the protected information:

~Z = ~XG + ~MH. (6)

On the contrary to IPM, the matrices G and H do not have speci�c form (recall IPM
matrices are formatted as Eqn. 2 and 3). But there is no inverse operation of �Sub�eldRepre-
sentation� (recall Def. 2). Therefore, IPM is a special case of DSM, but some DSM encodings
(Eqn. 6) cannot be represented as IPM.

ODSM uses orthogonal codes such that recovering ~M is straightforward knowing ~Z: it
consists in an orthogonal projection from spacevector Fn

2 onto D. Actually, the complete com-
mutative diagram involved in DSM is depicted in Fig. 2. The operations are explicited below:

• Information vector ~X is encoded as ~XG (using linear application EC), while decoding of
~XG into ~X is ensured by the decoding application DC ;

• Similarly, masking random variables ~M are encoded as ~MH (using linear application ED).

Decoding of ~MH into ~M is ensured by the decoding application DD;

• Creating an encoded word ~Z consists in adding one codeword ~XG from C to one codeword
~MH from D. In reverse, projections of ~Z ∈ Kn to C (resp. D) is respectively obtained
by linear projection operation ΠC (resp. ΠD).

When C and D are orthogonal, then GHT = 0, the all-zero l × (n − l) matrix. Therefore

ΠC(~Z) = ~ZGT(GGT)−1G and ΠD(~Z) = ~ZHT(HHT)−1H [5].
This allows for the veri�cation that an attacker which injects a fault has not corrupted

the (useless in terms of exploitation) masks ~M . In practice, the attack (addition of a nonzero
bitvector ε ∈ Fnl

2 \{0}) is undetected if and only if ε ∈ C. Indeed, otherwise ε has a nonzero
component in spacevector D, and the fault injection is detected. The fault detection capability
can be quanti�ed in two models:

5
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Figure 2: Commutative diagram of DSM masking scheme

1. Assumption 1: the di�culty of the attack is all the larger as the number of bits �ipped is
larger. Thus, undetected faults ε ∈ C\{0} must have Hamming weights ≥ dC , where dC
is the minimum distance of code C.

2. Assumption 2: the attacker can corrupt Z with the same di�culty whatever ε, but cannot
control the value of ε. Said di�erently, ε is a random variable uniformly distributed in

Fnl
2 \{0}. The probability that the fault is not detected equals to 2l(n−1)

2nl−1 ≈ 2−l.

Thus, the probability of undetected faults gets lower as l increases. However, this approach
has three drawbacks:

• First of all, the masks used in ODSM keep unchanged during each call of cipher, which
allows fault detection. But the "static" masks may pose a vulnerability since masks should
be refreshed to avoid unintended dependencies between sensitive variables.

• Secondly, it allows only to check errors on states ~Z, but not during non-linear computa-
tions (which are tabulated, i.e., operations on ~Z consist in lookup table accesses). From
a hardware point of view, this means that ODSM allows to detect faults in sequential
logic (e.g., register banks, RAM, etc.), but not in combinational logic (e.g., logic gates or
ROM).

• Thirdly, during veri�cation, that is the projection of ~Z + ε in spacevector D, the state ~Z
is manipulated, hence additional leakage is produced, which must be taken into account
in the security evaluation of DSM representation (Eqn. 6).

The �rst two points are structural weaknesses, and will be �xed in Alg. 3, starting from
Section 3. For the third one, some codes suitable for DSM are constructed by Carlet et al.
in [6] by duplicating the masks ~M , while this solution do not allow an end-to-end scheme.

3 Novel end-to-end fault detection scheme

3.1 Rationale

The core idea in our new scheme is to duplicate (or more times) the secret X, rather than

duplicating masks ~M as in [6], so that it can be checked at the end (when it is no longer
sensitive�e.g., a ciphertext is a non-sensitive variable, so as the plaintext).

Our new scheme is a IPM-like masking scheme, called IPM-FD. Since IPM is a promising
high-order masking scheme with higher bit-level security order, we extend it with fault detection
capability so that it can resist side-channel analysis and fault injection attacks simultaneously.
Speci�cally, we represent the information as a vector (X1, X2, . . . , Xk) ∈ Kk where K = F2l .

We propose the new encoding as follows. Let us denote:

6
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De�nition 3 (IPM-FD data representation).

~Z = (X1, X2, . . . , Xk︸ ︷︷ ︸
secrets ~X

) G + (Mk+1, . . . ,Mn︸ ︷︷ ︸
masks ~M

) H = (Z1, Z2, . . . , Zn) (7)

where

G = (Ik||0) ∈ Kk×n

H = (L||In−k) ∈ K(n−k)×n

here Ik is the identity matrix k × k in K, and L is a matrix of size (n − k) × k, that is L has
coe�cients (Li,j)k<i≤n,1≤j≤k.

This de�nition 3 is a generalization of Def. 1. In practice, we will call Equ. 7 with redundancy
to detect faults in the information X, i.e., (X1, X2, . . . , Xk) = (X,X, . . . ,X) as:

~Z = (X,X, . . . ,X︸ ︷︷ ︸
k times

)G + (Mk+1, . . . ,Mn)H. (8)

For the sake of convenience, the IPM-FD encoding used in this paper is depicted in Fig. 3.
It illustrates a protection using n = 3 shares of l = 8 bits, with those security features:

• dw = 1 (1st-order secure at byte-level), because dual distance of H in F28 is 2;

• db = 3 (3rd-order secure at bit-level), since dual distance of H in F2 is 4�the sub�eld
representation of code spawn by

(
1 L2 L3

)
has parameters [24, 8, 4]2 (showed in Fig. 3).
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Figure 3: Dimensions (typical) of IPM-FD encodings, for n = 3, k = 2 and l = 8 bits

Computation can be carried out on such ~Z, and when it is over (e.g., the complete AES is
�nished), the implementation can check whether the k copies of the information are the same.
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This allows to detect up to (k − 1) errors (there is an error if the k copies are not equal to
each other). This end-to-end computation is the speciality of this approach. On the contrary,
approach proposed on [6] needs to check for faults at each step of the computation.

Repeating X for k times may increase the signal captured by the attacker by a factor k.
Nonetheless, such aspect is irrelevant to security order. Notice that, as future extension, one
might consider an encoding of information X which is more e�cient in terms of rate than the
simple k-times repetition code X 7→ (X, . . . ,X). However, such representation in Equ. 8 allows
for an end-to-end security protection against fault injection attacks, as illustrated in Alg. 3.

For fault detection, either the algorithm 3 is started from scratch, or other actions, such as
event logging for subsequent analysis (aiming at taking proactive actions to plug this leak). It
is obvious that detecting fault in each intermediate can be carried out at any place in Alg. 3,
especially during steps 5. However, such precaution is super�uous, as an overall check is done
at the end, that is at line 8. In addition, intermediate checks would disclose when the fault
occurs (e.g., at which round), which delivers precious feedback to the attacker regarding the
accuracy and the reproducibility of the setups.

3.2 Computing with representation of IPM-FD (as in Def. 3)

First of all, we present one instance of IPM-FD with k = 2 to clarify its encoding. We denote
~X = (X1, X2) ∈ K2, and ~M = (M3, . . . ,Mn) ∈ Kn−2. Thus, we have Eqn. 7 such that,

G =

(
1 0 | 0 0 . . . 0
0 1 | 0 0 . . . 0

)

H =


L3,1 L3,2 | 1 0 . . . 0
L4,1 L4,2 | 0 1 . . . 0
...

... | 0 0
. . . 0

Ln,1 Ln,2 | 0 0 . . . 1


or, said di�erently, we have ~Z = (Z1, . . . , Zn) ∈ Kn which is equal to:

Z1 = X1 + L3,1M3 + L4,1M4 + . . .+ Ln,1Mn

Z2 = X2 + L3,2M3 + L4,2M4 + . . .+ Ln,2Mn

Zi = Mi for 3 ≤ i ≤ n

Here, we can see that (Z1, Z3, . . . , Zn) ∈ Kn−1 and (Z2, Z3, . . . , Zn) ∈ Kn−1 are two IPM [2]
sharings. Therefore, we have k = 2 ways to demask:

〈L1, ~Z〉 = X1 = X, and 〈L2, ~Z〉 = X2 = X,

where as a convention, L1,1 = L2,2 = 1, L1,2 = L2,1 = 0 and:

L1 = (Li,1)1≤i≤n ∈ Kn, and L2 = (Li,2)1≤i≤n ∈ Kn.

It is known that universal computation can be achieved by Lagrange interpolation, which
requires addition and multiplication. Hereafter, we present two basic algorithms (also refresh
algorithm in appendix. A), with the most general case (k words of information and scalable
with di�erent k) used to build a complete masked cryptographic implementation.

8
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Algorithm 1: Secure addition in IPM-FD

input : Two sets of scalar tuples ~X = (X1, . . . , Xk) and ~X ′ = (X ′1, . . . , X
′
k) shared as:

• ~Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +
∑n

i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

• ~Z′ = (Z′
1, . . . , Z

′
n) = (X ′

1 +
∑n

i=k+1 Li,1M
′
i , . . . , X

′
k +

∑n
i=k+1 Li,kM

′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing ~R = (R1, . . . , Rn) ∈ Kn such that, for all j (1 ≤ j ≤ k),
〈~R{j}∪{k+1,...,n}, ~L{j}∪{k+1,...,n},j〉 = Xj +X ′j

1
~R = (Z1 + Z ′1, . . . , Zn + Z ′n)

2 return R

3.2.1 Secure addition of IPM-FD

With Equ. 8, we denote encoding of X and X ′ by ~Z and ~Z ′ respectively, thus the addition is
linear and can be calculated straightforwardly as in Alg. 1.

3.2.2 Secure multiplication of IPM-FD

Secure multiplication can be achieved by selecting only one amongst the k �rst coordinates,
while keeping the (n− k) masks, and multiplying (n− k + 1) shares by using the original IPM
multiplication. Therefore, multiplication of IPM-FD is implemented in Alg. 2.

Algorithm 2: Secure multiplication of IPM-FD with k pieces of information

input : Two sets of scalar tuples ~X = (X1, . . . , Xk) and ~X ′ = (X ′1, . . . , X
′
k) shared as:

• ~Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +
∑n

i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

• ~Z′ = (Z′
1, . . . , Z

′
n) = (X ′

1 +
∑n

i=k+1 Li,1M
′
i , . . . , X

′
k +

∑n
i=k+1 Li,kM

′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing ~P = (P1, . . . , Pn) ∈ Kn such that, for all j (1 ≤ j ≤ k),
〈~P{j}∪{k+1,...,n}, ~L{j}∪{k+1,...,n},j〉 = Xj ·X ′j

1 for j ∈ {1, . . . , k} do
2

~P [j]← IPMult(Z{j}∪{k+1,...,n}, Z
′
{j}∪{k+1,...,n}) // IPMult is Alg. 5 of [2]

3 Let us write ~P [j] as (Pj , Nk+1,j , . . . , Nn,j), where Pj = XjX
′
j +

∑n
i=k+1 Li,jNi,j ∈ K

4 for j ∈ {2, . . . , k} do // Masks homogenization between ~P [1] and ~P [j]
5 for i ∈ {k + 1, . . . , n} do
6 Pj ← Pj + Li,j(Ni,1 +Ni,j)

// (Pj , Nk+1,1, . . . , Nn,1) is a sharing of XjX
′
j by the (n− k) masks of ~P [1]

7 return ~P = (P1, . . . , Pk, Nk+1,1, . . . , Nn,1) ∈ Kn.

k times of multiplication are thus carried out on shares in Kn−k+1, and the resulting ~P [j] ∈
Kn−k+1 for j ∈ {1, . . . , k} are applied from line 4 to line 6 as in Alg. 2 to homogenize masks in

(k − 1) sharings with the same masks as ~P [1].
We call from line 4 to line 6 in Alg. 2 as homogenization algorithm used to merge the results

9
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~P [j] where 1 ≤ j ≤ k. Thus we have the following lemma, which applies to non-redundant
sharings such as that of Eqn. 1.

Lemma 1 (Homogenization of two sharings). Let ~Z = (Z1, . . . , Zn) and ~Z ′ = (Z ′1, . . . , Z
′
n) be

two sharings, that 〈L, ~Z〉 = X and 〈L′, ~Z ′〉 = X ′. There exists an equivalent sharing ~Z ′′ and an

algorithm to transform ~Z ′ into ~Z ′′ such that ~Z and ~Z ′′ share all coordinates but the �rst one.

The proof of Lemma 1 is given in appendix B. The full masked implementation of a cryp-
tographic algorithm can be built as in Alg. 3. Therefore, one can start with plaintext & key
representation as Equ. 8 and carry addition / multiplication to implement cryptographic algo-
rithms like AES, and end up with a ciphertext still with the form as Equ. 8. Hence veri�cation
can be done only at the very end.

Algorithm 3: End-to-end protection of a cryptographic algorithm (here AES-128) against
fault injection attacks using IPM-FD scheme

input : Plaintext X ∈ F16
28 , key K ∈ F16

28 , and number of detected faults df = k − 1,
number of shares n = dw + 1, bit-level security order db = d⊥D − 1

output: Ciphertext, or ⊥ if a fault has been detected

1 The matrices G and H (corresponding to code C and D, respectively) are determined
with respect to the requirements on side-channel and fault protection dw, db and df
(see examples in Tab. 1 and Tab. 3)

2
~M ←R F16×(n−k)

28

3
~Z ← (X, . . . ,X)G + ~MH // Recall Eqn. 8

4 . . .
5 Arithmetic operations for the (secure) computation, using Lagrange interpolation

polynomial. This includes additions (Alg. 1) and multiplications (Alg. 2)
6 . . .

7 (X1, . . . , Xk)← ΠC(~Z) // Recall ΠC(~Z) in Fig. 2

8 if X1 = . . . = Xk then
9 return X1

10 else
11 return ⊥

4 Security analysis of IPM-FD and optimal codes selection

The security level of IPM-FD can be characterized by three metrics, namely word-level security
order dw, bit-level security order db and number of detected faults df (=k− 1). In this section,
we show the security order of IPM-FD and how to choose optimal codes by interpreting IPM-FD
as a coding problem.

4.1 Security order of IPM-FD on SCA resistance

The addition and refresh algorithm are secure since there is no degradation on masks, we focus
on multiplication algorithm Alg. 2 and we have following theorem 1.

Theorem 1. The multiplication of IPM-FD in Alg. 2 is d⊥D − 1 order secure.

10
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Proof. The k IPMult multiplications at line 2 are secure at (n − k)-th order [2]. After their

application, the k shared variables ~P [j], 1 ≤ j ≤ k, are masked by Ni,j (k+1 ≤ i ≤ n, 1 ≤ j ≤ k)
that are (n− k)× k uniformly distributed and i.i.d. random variables.

At step 6, indexed by i (k + 1 ≤ i ≤ n), the contents of Pj is:

Pj = XjX
′
j +

(
i∑

i′=k+1

Li′,jNi′,1

)
+

(
n∑

i′=i+1

Li′,jNi′,j

)
. (9)

It is easy to see that any collusion of intermediate variations with mixed variables masked
by Ni,j and Ni,j′ , for j 6= j′, requires more intermediate values to be probed than strategies
which focus on a given Ni,j (for a given j).

The intermediate variables which are pure in Pi,1 (since homogenization process consists in
turning Ni,j into Ni,1) are those at:

• line 2: X1X
′
1 +

∑n
i=k+1 Li,1Ni,1, and the (n− k) masks Ni,1 (k + 1 ≤ i ≤ n);

• line 6: for i = n, Pj = XjX
′
j +

∑n
i=k+1 Li,jNi,1.

Those pure shares are those of results ~P (line 7). Together, they have the shape:

~P = (X1, . . . , Xk) G + ~N H,

where ~N = (Nk+1,1, . . . , Nn,1) ∈ Kn−k is a uniformly distributed tuple of i.i.d random variables.
Hence d⊥D − 1 columns of H are independent [12, Theorem 10], which means if the attacker
probes up to d ≤ (d⊥D−1) variables, the secret Xj encoded as an element of Fn−k+1

2l
is perfectly

masked. The security order of Alg. 2 is (d⊥D − 1).

In summary, the security order at word-level dw and bit-level db of IPM-FD corresponding
to (d⊥D − 1) at word-level and bit-level (by Code Expansion de�ned in Def. 2), respectively. In
particular, the maximum word-level security order dw is (n − k), since d⊥D ≤ (n − k + 1) with
equal if and only if d⊥D is maximized.

4.2 Choosing optimal codes for IPM-FD

Two security orders dw and db are connected to dual distance of D at word-level and bit-
level, by encoding Eqn. 7 and Eqn. 8. Thus, we can search for minimal n satisfying the given
requirements on the three parameters df , dw and db. Since the best db is much di�cult to
obtain, we �rst search for codes given df and dw, then �nd the best one with respect to optimal
db. For the �rst step, the Alg. 4 is adopted for selecting codes with minimal n given df and dw.

Algorithm 4: Selecting codes given df and dw.

input : l for K = F2l , df for number of detected faults and dw for word-level
side-channel security

output: the minimal n satisfying the requirements

1 n = dw // n is at least the minimum distance of the code generated by H⊥

2 while MinimumDistance([BKLC(GF (2l), n, df + 1)] < dw) do
3 n+ +

4 return n

11
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The second step is to choose the best code with maximal bit-level security db. We propose
Alg. 5 to select optimal codes with maximized db.

Algorithm 5: Choosing optimal codes with maximal db.

input : l for K = F2l , df for number of detected faults, dw for word-level side-channel
security and number of shares n

output: the maximal db and optimal code D

1 db = dw // Security order at bit-level is greater than word-level

2 Dopt = null
3 forall code D = [n, df + 1, dw + 1]2l do
4 D2 = Sub�eldRespresentation( D, GF (2) )
5 if db < MinimumDistance(D2) then
6 db = MinimumDistance(D2)
7 Dopt = D

8 return db, Dopt

We present some examples for codes in F28 in Tab. 1 (for F24 in Tab. 3, resp) calculated
by Magma for small k and n. Interestingly, we compare the original IPM and IPM-FD with n
and n + 1 shares respectively, since in IPM-FD redundancy is needed for fault detection. For
IPM with n = 3, we have optimal parameters dw = 2 and db = 5, while for IPM-FD with
n = 4, k = 2, the optimal dw and db are dw = 2 and db = 4. Hence there is a trade-o� for fault
detection, which sacri�ces the bit-level side-channel resistance.

For instance, for k = 2, we can detect one error. We recall that the security order of IPM
at bit level is given by the minimum distance of the code generated by H⊥ = (1, L2, . . . , Ln)
(projected from K = F2l to the binary ground �eld Fl

2). Now, adding fault detection capability,
the security order of IPM-FD becomes that of the minimum distance of the code generated by
Equ. 10. However, the minimum distance of this code is less than that generated by either:
(1, L3,1, L4,1, . . . , Ln,1) or (1, L3,2, L4,2, . . . , Ln,2).

H′⊥ =

(
1 0 L3,1 L4,1 . . . Ln,1

0 1 L3,2 L4,2 . . . Ln,2

)
. (10)

5 Practical implementation and performances

We implement IPM-FD scheme on AES-128. All the computations are made with additions,
multiplications and lookups in some pre-computed tables.The random number generator comes
from the Sodium library [?]. Each sensitive variable (Nb ∗ (Nr + 1) subkeys from the Key
Schedule routine and Nb bytes in state array), is masked into n shares using n − k random
bytes. In particular, about non-linear operations, the S-box of a masked value is computed using
instead of the 256-sized table, its polynomial expression obtained via Lagrange interpolation:

x ∈ F28 7→ 63 + 8fx127 + b5x191 + 01x223 + f4x239 + 25x247 + f9x251 + 09x253 + 05x254.

After demasking a shared variable, we check that the data has not been faulted by comparing
the k copies and pose an alarm if any fault is detected. Our implementation works for any n > k.
Specially, for n < 5 and k < 3 we choose the Best Known Linear Code (BKLC) D obtained
with Magma otherwise we randomly generate a matrix for masking.

1The maximal db for IPM codes with n = 4 shares in F28 is only 10 (d⊥D equals 11), not 11 as in [17]
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Table 1: Instances of codes with X ∈ K = F28 , db in IPM entries are consist with results in [17]

Inputs Outputs of Alg. 4 and Alg. 5
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 3 H⊥ =
(
1 X8

)
0 2 3 7 H⊥ =

(
1 X8 X26

)
0 3 4 101 H⊥ =

(
1 X8 X26 X17

)

IPM-FD

1 0 2 0 H⊥ =

(
1 0
0 1

)
1 1 3 3 H⊥ =

(
1 0 X8

0 1 X17

)
1 2 4 6 H⊥ =

(
1 0 X8 X20

0 1 X27 X7

)

5.1 Performance evaluation

We make a comparison for the same security order at word-level, between:

• No fault detection (classic IPM, k = 1) � this is our reference

• Single fault detection by temporal redundancy (repeat twice the IPM computation)

• Single fault detection embedded into IPM (so-called IPM-FD for k = 2)

Performance-wise, Tab. 2 shows that two fault detection strategies (temporal repetition and
IPM-FD) have almost identical performances. But if we consider the most time-consuming

Table 2: Performance comparison of IPM-FD without and with faults detection. random is
the number of generated random bytes when masking and refreshing, speed is the runtime in
milliseconds obtained on a virtual machine running with 2.8 GHz 6-core processor.

Security order IPM (baseline) Two consecutive ex-
ecutions of IPM

IPM-FD k = 2

dw = 1 n = 2 (db = 3), speed=
1.52, random=1936

n = 2 (db = 3), speed=
3.04, random=3872

n = 3 (db = 3), speed=
2.93, random=3856

dw = 2 n = 3 (db = 7), speed=
2.25, random= 5152

n = 3 (db = 7), speed=
4.50, random= 10304

n = 4 (db = 6 �
we loose 1 order at
bit-level), speed= 4.31,
random= 10272

operation, the �eld multiplication, the number of �eld multiplications in IPM on n shares (Alg. 5
of [2]) is 3n2 − n. While the number of multiplications in IPM-FD on n shares is:

• k(3(n− k + 1)2 − (n− k + 1)) regarding the k IPM multiplications on n− k + 1 shares,

• (k − 1)(n− k) regarding the (k − 1) homogenizations.

Hence a total complexity of k(3(n− k + 1)2 − (n− k + 1)) + (k − 1)(n− k), that is:

• 3n2 − n for IPM-FD with k = 1,

13
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• 6n2 − 13n+ 6 for IPM-FD with k = 2.

Now, we have that 2×(3n2−n) > 6n2−13n+6, therefore it is more interesting, complexity-wise,
to use IPM-FD for k = 2 than to repeat twice a computation.

Notice that temporal redundancy is prone to fault injection attacks, whereby an attacker
would reproduce exactly the same fault on the repeated executions. Therefore, method IPM-FD
is intrinsically stronger against fault attacks, at the same cost in terms of execution speed.

6 Conclusion and perspectives

IPM shows an advantageous property - higher security order at bit-level db than at work-level
- as a promising alternative to Boolean masking. In this paper, we propose a novel end-to-
end fault detection scheme called IPM-FD, which is a IPM-like scheme to detect faults by
redundancy on secrets rather than on masks. The IPM-FD is also a uni�ed scheme to resist
side-channel analysis and fault injection attack simultaneously. We also present an instance by
applying IPM-FD to AES and provide a comparison on performance with di�erent settings.

As a perspective, we notice that the performances of both IPM and IPM-FD can be improved
by choosing small (or sparse) values for Li,j ∈ K scalars. This strategy is similar to that already
employed by Rijndael inventors, for instance when designing the MixColumns operation. This
raises the question of �nding codes with sparse matrices of high dual distance.
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A Secure refresh algorithm for IPM-FD

As pointed in [18], we need to apply a refresh algorithm after each squaring operation to keep

independence between masks (Alg. 2 with ~Z = ~Z ′). The algorithm for the refresh of IPM-FD is
given in Alg. 6. Notice that this algorithm can be computed in-place, meaning that the output
overwrites the input.

Algorithm 6: IPM-FD refresh algorithm

input : Let k < n. One IPM-FD sharing ~Z = (X1, . . . , Xk) G + (Mk+1, . . . ,Mn) H, as
de�ned in Equ. 7

output: An equivalent IPM-FD sharing ~Z ′ = (X1, . . . , Xk) G + (M ′k+1, . . . ,M
′
n) H,

where (Mk+1, . . . ,Mn) is independent from (M ′k+1, . . . ,M
′
n).

1
~Z ′ ← ~Z // When computed in-place, ~Z ′ is not needed.

2 for i ∈ {k + 1, . . . , n} do
3 ε←R K // Fresh random variable

4 Z ′i ← Z ′i + ε
5 for j ∈ {1, . . . , k} do
6 Z ′j ← Z ′j + Li,jε

7 return ~Z ′ ∈ Kn.

B Proof of Lemma 1

Recall that Lemma 1 homogenize all masks in k sharings into one. The proof is as follows.

Proof. We apply a pivot technique to ~Z ′′. Let ε ∈ K. We notice that the new sharing ~Z ′′ =
~Z ′+(L′2ε, ε, 0, . . . , 0), also represents the same unmasked value as ~Z ′ does. Indeed, 〈L′, Z ′〉 = X ′,

and 〈L′, (L′2ε, ε, 0, . . . , 0)〉 = L′2ε+ L′2ε = 0. By choosing ε = ~Z ′2 + ~Z2, we get for ~Z
′′:

~Z ′′ = (Z ′1 + L′2(Z ′2 + Z2), Z2, Z
′
3, . . . , Z

′
n).

Therefore, ~Z ′′ now has the same the second share (coordinate at position 2) with ~Z. The com-
plete homogenization is thus the repetition of this process for all the coordinates i ∈ {2, . . . , n}.
Notice that this algorithm does leak information neither on ~Z nor on ~Z ′, since it consists only
of additions of masks to a sharing from an independent sharing. It is akin a refresh procedure
albeit where the new masks are actually a compensation of ~Z ′ masks by those of ~Z, whilst
keeping the masking invariant of Equ. 1. Actually, it is a refresh algorithm using the masks of
the di�erence ~Z ⊕ ~Z ′.

C IPM-FD with k = 2

By using Magma [20], we present some instances for IPM-FD with k = 2, in particular K = F24

in Tab. 3 and K = F2 in Tab. 4, respectively. Interestingly, we notice that for K = F2 the best
minimum distance of H⊥ is equal to BKLC(GF(2), n, 2), where n is the same as in the Tab. 4.
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Table 3: Examples with K = F24 , db and dw are side-channel security orders at bit-level and
word-level, respectively.

Inputs Outputs of Alg. 4 and Alg. 5
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 2 H⊥ =
(
1 X5

)
0 2 3 5 H⊥ =

(
1 X5 X10

)
0 3 4 7 H⊥ =

(
1 X5 X9 X13

)
0 4 5 9 H⊥ =

(
1 X5 X9 X12 X1

)
0 5 6 11 BKLC(GF (2), 4 ∗ 6, 4) ' [24, 4, 12]
0 6 7 13 BKLC(GF (2), 4 ∗ 7, 4) ' [28, 4, 14]

IPM-FD

1 0 2 0 H⊥ =

(
1 0
0 1

)
1 1 3 2 H⊥ =

(
1 0 X5

0 1 X10

)
1 2 4 4 H⊥ =

(
1 0 X5 X11

0 1 X11 X4

)

Table 4: Examples with K = F2, dw and db are security orders at word-level and bit-level,
respectively.

Inputs Outputs of Alg. 4 and Alg. 5
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 1 H⊥ =
(
1 1

)
0 2 3 2 H⊥ =

(
1 1 1

)
0 3 4 3 H⊥ =

(
1 1 1 1

)
0 4 5 4 H⊥ =

(
1 1 1 1 1

)
0 5 6 5 H⊥ =

(
1 1 1 1 1 1

)
0 6 7 6 H⊥ =

(
1 1 1 1 1 1 1

)
0 7 8 7 H⊥ =

(
1 1 1 1 1 1 1 1

)
0 8 9 8 H⊥ =

(
1 1 1 1 1 1 1 1 1

)
0 9 10 9 H⊥ =

(
1 1 1 1 1 1 1 1 1 1

)

IPM-FD

1 0 2 0 H⊥ =

(
1 0
0 1

)
1 1 3 1 H⊥ =

(
1 0 1
0 1 1

)
1 2 5 2 H⊥ =

(
1 0 1 1 0
0 1 1 1 1

)
1 3 6 3 H⊥ =

(
1 0 1 1 0 1
0 1 1 1 1 0

)
1 4 8 4 H⊥ =

(
1 0 1 1 0 1 0 1
0 1 1 1 1 0 1 0

)
1 5 9 5 H⊥ =

(
1 0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 0 1

)
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