
SECODE
Compiler-based automation of
side-channel countermeasures
Nicolas KISS Erven ROHOU Damien HARDY

ÉQUIPE PROJET
PACAP
Tel : 02 99 84 25 01
Mail : nicolas.kiss@inria.fr

Inria Rennes Bretagne-Atlantique
Campus de Beaulieu, 263 Avenue
Général Leclerc, 35042 Rennes

Reconfigurable countermeasures

Advantages of compile-time transformation :

Experimental results
Application of Boolean Masking
on an AES-128 implementation

Setup :
STM32F100RBT6B microcontroller
(ARM Cortex-M3, 24MHz, 8KB RAM)

● Automation of the whole process (no source or assembly editing)

● Invisible for the software programmer (like compiler optimizations) ● Coverage of most Instruction Set Architectures (ARM, AVR, x86, ...)

● Low-level control over the target program (e.g. memory allocation)

The idea is to insert software
protections against physical threats
(e.g. masking, error correcting codes)
automatically during compilation.

Compiler-automated transformation

Target programPrimitives

INPUT (after propagation phase)

encode()

decode()

addition()

OUTPUT
 (after substitution phase)

call

call

call

call

encode()

addition()

addition()

decode()

● Propagation phase :
A data-flow analysis is performed to locate each
sensitive instruction in the target program ().

Protected program

● Define the transformation primitives (data type,
operators) as functions in a separate C/C++ file.
They can be written without having any
knowledge about LLVM.

store %8, %2

add %2, %15

add %2, %48

printf(%2)

● Annotate the sensitive variables in the source
program () with a specific keyword.

This work was partially funded by the French
National Research Agency (ANR) as part of the
project SECODE (ANR-15-CHR2-0007).

Other SECODE partners are listed on the right.

Side-channel analysis :

● Correlation Power Analysis
(1st order) on AES 1st round

● 20,000 executions (traces)

BEFORE

Future work

AFTER

Study the implementability of other transformations with primitives, such as :

● Orthogonal Direct Sum Masking (ODSM), Rotating Sboxes Masking (RSM)
● Hamming codes, Reed–Solomon codes, Linear Complementary Dual codes

Result : No correlation

● Substitution phase :
Each sensitive variable is type-transformed to
have a new data type. Each sensitive instruction
is removed and replaced by a call to a primitive.

U
S
E
R

C
O
M
P
I
L
E
R

Time (SubBytes execution)

Co
rr
e l
at
io
n

co
ef
fic

ie
n t

Time (SubBytes execution)

Co
rr
e l
at
io
n

co
ef
fic

ie
n t

	Diapo 1

