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ABSTRACT. We give a new concatenated type construction for linear codes with comple-
mentary dual (LCD) over small finite fields. In this construction we need a special class
of inner codes that we call isometry codes. Our construction generalizes a recent construc-

tion in [1] and [5] and it allows us to construct LCD codes with improved parameters directly.
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1. INTRODUCTION

Linear codes with complementary duals (LCD) are linear codes whose intersection with
their dual is trivial. This concept was introduced by Massey [6]. Recently the first author and
Guilley [1] investigated an interesting application of binary LCD codes against side-channel
attacks and fault injection attacks and presented several constructions of LCD codes.

This has started an interest in several newer constructions of LCD codes over arbitrary
finite fields, see for example [2, 4, 5, 9]. These constructions either use special classes of linear
codes like quasi-cyclic codes or they construct LCD codes over large finite fields compared
to their length. In classical coding theory an efficient method for constructing long codes
over small finite fields is the method of concatenation. It uses codes over a large finite field
(outer codes) with minimum distance D and suitable inner codes with minimum distance d
and produces linear codes over the corresponding small field of minimum distance having a
guaranteed lower bound of dD. There is only one analog of this construction for LCD codes,
which is in [1, Proposition 3| and [5, Theorem 5.2]. However this construction works only if
the small field F, and the large field F . satisfy

e ¢ is even or

e ¢ is odd and k is odd.

Moreover the corresponding inner code has parameters [k, k, 1] and the guaranteed minimum
distance is just D if the starting LCD code (outer code) over the large field F » has minimum
distance D.
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In this paper we introduce a new class of codes that we call isometry codes. These codes
are defined for any F, and have parameters [n, k, d] with d > 2. We prove that using isometry
codes as inner codes in the concatenation gives LCD codes in the small finite field if we start
with LCD codes (outer codes) over a large finite field (see Theorem 3.1 below). This allows
us to construct LCD codes with larger guaranteed minimum distance over arbitrary finite
fields. We also provide some direct improvements of the results given in [4, Table 2].

The rest of the paper is organized as follows. We introduce isometry codes in Section 2.
We give our construction in Section 3. We give some applications and numerical results in
Section 4.

2. ISOMETRY CODES

Let ¢ be a prime power and 2 < k < n be integers. The {race of a € Fyi over Fy is defined
as

k=1
1 k—1
Tr]Fqk/Fq(a) = Z;)oﬂ =a+al+---+af
1=
From now on, we denote Tr]Fqk/Fq (o) by Tr(«). Let {eq,...,ex} S IF’;. Assume that (e, ..., ex)
is an ordered basis of F x over Fy. Recall that (e}, ..., e} ) is the dual basis of (e1,...,ep) if

Tr(eieg-) = 51']'

for 1 < 4,5 < k. There exists a uniquely determined dual basis for any basis of F » over F,.
Recall that (e1,...,ex) is called a self-dual basis of F i over Fy if (e1,...,ex) = (€],...,€}).
Note that there exists a self-dual basis of F x over I, if and only if (see, for example, [8])

e ¢ is even or

e ¢ is odd and k is odd.

Definition 2.1. Let (e1,...,ex) be an ordered basis of Fx over Fy. An Fy-linear map

m: Fe — Fy is called an isometry with respect to (e1,. .., ey) if

m(e;) - m(ej) = di;
for 1 <i,j < k where the inner product is the Euclidean inner product in Fy. Here (e}, ..., ¢},)

is the dual basis of (e1,...,ex). The image 7(F ) is called an isometry code with respect to

(e1,...,€x).

Remark 2.2. Note that an isometry code m(F,x) with respect to (e1,...,ex) is a linear
[n, k] code over F,. Indeed, {m(e1),m(e2),...,m(ex)} is linearly independent over F,: If
ai,as,...,a, € Fy with a1m(er) + agm(ez) + -+ - + arm(er) = 0, then multiplying the vectors
with 7(e}) in both sides we obtain that

arm(e)) -m(er) + aom(e)) - m(ea) + -+ + apm(e)) - w(ex) = a1 = 0.
Similarly, az = ag = - - - = aj, = 0, which shows that the dimension of 7(F ) is k over F,.

Next we give some simple examples.
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Example 2.1. If k =n and (e1,...,ex) is a self-dual basis of Fx over Fy, then the map

T Fge — IF];
ur— 7(u) = (Tr(eju), Tr(equ), . .., Tr(egu))

is an isometry with respect to (e1,. .., ex) obviously. The corresponding isometry code 7(IF )
is a linear [k, k, 1] code over F,.

Example 2.2. We have confirmed the following results by MAGMA.

o Ifk=2,n=23 and q =2, then there are 6 distinct isometries w: Fpo — IFZ’ for each
basis (e1,e2) of Fp2 over .

o Ifk=2,n=4 and q =2, then there are 32 distinct isometries 7 : F 2 — Fg for each
basis (e1,e2) of Fy2 over IFy.

o Ifk=3,n=4 and q =2, then there are 48 distinct isometries 7 : Fs — Fg for each
basis (e1,e2,e3) of Fys over Fy.

o Ifk=2,n=2andq=3, then there is no isometry m : Fpo — Fg for any basis (e1, e2)
of Fge over Fy.

o Ifk=2,n=23 and q =3, then there are 24 distinct isometries 7 : Fp2 — IFZ’ for each
basis (e1,e2) of Fp2 over .

e Ifk =2,n=4 and q = 3, then there are 288 distinct isometries w : Fp2 — Fg for
each basis (e1,ez) of Fy2 over IFy.

Definition 2.3. Let 2 < k < n be integers. Assume that there exists an isometry = : ]Fqk —
[Fy with respect to at least one basis (e1, ..., ex) of Fx over Fy. Let dmax —isometry(g; [, k]) be
the largest minimum distance of all isometry codes 7(F,x) S F among all basis (e1, ..., ex)
of Fyx over F,. Assume that there is no isometry 7(F,x) S Fy with respect to any basis
(e1,...,ex) of Fgx over Fy. Then we define dmax _isometry(q; [, k]) = 0 by convention.

The following examples are interesting and they give reasoning for Definition 2.3.
Example 2.3. dumax—isometry(q; [4,2]) = 2 for ¢ = 2. For example,
T :IFq2 — IF';1
u— m(u) = (Tr(w?u), Tr(w?u), Tr(wu), Tr(w?u))
is an isometry with respect to (1,w) and 71(Fy2) is a linear [4,2,1] code over Fy. However,
my Fp2 — F
u— w(u) = (Tr(wu), Tr(w?u), Tr(u), Tr(uw))

is an isometry with respect to (1,w) and m2(F ;) is a linear [4,2,2] code over Fy. Here w
is the primitive element of Fo2 satisfying w?> +w + 1 = 0. Note that a code over Fo with
parameters [4,2,2] is optimal.
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Example 2.4. dpnax —isometry(q; [5,3]) = 2 for ¢ = 2. For ezample,
m Fgs — IFg
u— m(u) = (Tr(wbu), Tr(w’u), Tr(wSu), Tr(wSu), Tr(wiu))
is an isometry with respect to (1, w, w?) and (Fy3) is a linear [5, 3, 1] code over Fo. However,
mo Ky — Fg
u+—> w(u) = (Tr(wu), Tr(wdu), Tr(wby), Tr(u), Tr(u))

is an isometry with respect to (1,w,w?) and m2(Fys) is a linear [5,3,2] code over Fy. Here
w is the primitive element of Fo2 satisfying w3 + w + 1 = 0. Note that a code over Fy with

parameters |5,3,2] is optimal.

3. A NEw CONCATENATED TYPE CONSTRUCTION

In this section we give our construction.
Let 2 < k < n be integers and F, be a finite field such that

dmax —isometry(q; [nv k]) = 1.

Let 7 : Fyr — Fy be an isometry with respect to a basis (e1,...,ex) of Fy over F,
such that m(F ) is an Fg-linear code of length n, dimension k and minimum distance

dmax —isometry (Q§ [n, k] ) .

Let C' < 7, be a linear code over Fyx with parameters [s,t,d(C)]. Let 7 : FP — Fg® be the
Fg-linear map defined as

7®s :sz — Fy°
(041, az,... 7a8) = [77(051)¢ 77(042)7 s 77r(058)]
where F7* is identified with n x s matrices over F, and m(c;) corresponds to the i-th column

of length s over FFy.

Theorem 3.1. If C is an LCD code over F . with parameters [s,t,d(C)], then n®*(C) is
an LCD code over F, with parameters [sn,tk, d(C)dmax —isometry(q; 70, k])]-

Remark 3.2. This construction is the same with the one of [1, Proposition 3] and [5, Theorem
5.2] if k = n and 7 is the obvious isometry corresponding to self-dual bases as in Example
2.1. Note that dmax —isometry(q; [, k]) = 1 in this case. Our construction is new and effective
especially when dmax —isometry(; [12, k]) = 2 as in Examples 2.3 and 2.4.

Proof. ~ We use some methods of Chen-Ling-Xing in [3]. Let E = n(F) and E+ be its
dual in Fgn. Note that E is a linear [n,k], code and E* is a linear [n,n — k], code. For
1<i<slet B; = E and Ej- = E+. Note that

Ef‘xE;x---xEngZ”
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is an Fg-linear code with parameters [sn, s(n — k)],. We note that 7®(F ) L (Bf x By x
- x EF) trivially as

[r(ar), m(az), ... m(ag)] - [br, b2, ..., bs] = w(ea) - b1 + w(az) - b2 + - + w(as) - bs = 0
if m(aq) L by, m(ag) L bo, ..., m(as) L bs. Hence,
(1) 7®5(C) L (Ef x Ef x--- x EY).
Moreover, 7(IF x) N E+ = {0}. Indeed, let 3 € F . with 7(8) L E, or equivalently
(2) m(B) - m(ei) =0

for 1 <i < k. Let (e},e5,...,¢€;,) be the dual basis for the basis (e1,ez,...,ex) of F over
Fy. Let 8 = bie} + -+ + byej, with by, ..., b, € Fy. Then by (1) we have

(m(e})br + w(eh)ba + - + (e}, )by) - w(er) = 0,

which implies that by = 0 as 7 is an isometry and hence w(e}) - w(e;) = d1;. Similarly
by = ... = by = 0 and hence 8 = 0. Therefore, 7®(F 1) n (Ef" x E3 x .-+ x Ey) = {0} and
in particular

(3) 7®(CH) N (Ef x Ef x --- x ET) = {0}.
To show that 7®%(C) is LCD, we observe that it is enough to prove
(4) 7®5(Ch) L 7®5(0).
Indeed the dimension of the dual of 7®%(C') is
sn — th = dim(7®*(CF)) + dim(Ef x Ey x -+ x EL)

as dim(7®*(C*)) = k(s — t) and dim(Ej{ x Ey x --- x EX) = s(n — k). Using (1), (3)
and (4) we conclude that the dual of 7®%(C) is (Ef x Ef x --- x EX) @ 7®5(Ct). As
m®(C) N (B x Ey x -+- x EL) = {0} and C n Ct = {0}, we conclude that 7®%(C) is
LCOD. Indeed if a € 7®5(C) n 7®3(C)* = 7®5(C) n 7®5(C+), then there exists a € C n C+
such that a = 7®%(a). As C is LCD we obtain that a = 0 and hence a = 0.

Now we prove (4). Let (aq,...,as) € sz and (81,...,0s) € IF‘Z,C such that (aq,...,as) -
(B1y...,Bs)=0.For1 <l<sand1<i,j <k, let af,bljeIE"q such that

k koo
op = Z aje; and [ = Z b{eé.
i=1

=1

Hence we have that

s k k )
DI T
I=1i=1j=1

Taking the trace of both sides we obtain that

s k k
(5) SIS ajtd = 0

I=1i=1j=1
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as Tr(eie;-) =0 for 1 €1,5 < k. We will show that
(6) 7 (0, 0) T (Br, ., Be) = Y () - w(By) =0
=1

which implies (4). We have 7(oy) = S¥_, ain(e;) and w(B) = Z?:l b{Tr(e;-) for 1 <1 < s.
Hence

s s k k s k
D) - w(B) = YD D ajpfwles) - w(eh) = D0 ajb]
=1

I=1i=1j=1 I=1i=1
which follows from the isometry property that 7(e;) - m(e}) = d;; for 1 < 4,5 < k. Using (5)
and (6), we complete the proof.
O
Next we give a direct generalization of Theorem 3.1 which would be useful in some applica-
tions as it would cover a wider range of parameters. Let s = 2 be an integer and for 1 <14 < s,
assume that m; : Fgr — i are isometries with respect to the same basis (e, ..., e) of For
over [F,. Let us note that the n;’s need not be the same.
For each ¢, let E; := m; (Fqk) be the corresponding isometry code over F, with length n;,

dimension £ and minimum distance dmax —isometry(q; [1, k]). Consider the Fy-linear injection

o I3, — F71 x ... x F7s
q q q
(a1,09,...,a5) — [m(a1),...,ms(as)]

The following is a direct generalization of Theorem 3.1.

Theorem 3.3. If C is an LCD code over Fx with parameters [s,t,d(C)], then n(C) is an
LCD code over Fy of length ny + - - -+ ns and dimension tk. The minimum distance of ©(C')
is at least
min {2 Ao —isometry (@ [0, k]) = TS {1,...,s}, |I| = d(C)} :
i€l
4. NUMERICAL RESULTS

In this section we directly improve some parameters in [4, Table 2] using Examples 2.3 and
2.4. We also provide some numerical results on the parameters of isometry codes.
The following examples give improvements on [4, Table 2].

Example 4.1. There exists and optimal (mazimum distance separable) LCD code C with
parameters [4,2,3] over Fy (see for example [7]). Recall that mo(F4) is an isometry code
given explicitly in Example 2.3 with parameters [4,2,2] over Fo. Hence using Theorem 3.1
we obtain an LCD code with parameters [16,4,6]| over Fo. This is an improvement compared
to [4, Table 2|, as the corresponding LCD code in [4, Table 2] has parameters [16,2,6] over
Fs.

Example 4.2. There exists and optimal (mazimum distance separable) LCD code Cy with
parameters [4,2,3] over Fg (see for example [7]). Recall that mo(Fs) is an isometry code given
explicitly in Example 2.4 with parameters [5,3,2] over Fo. Hence using Theorem 3.1 and C}

we obtain an LCD code with parameters [20,6,6] over Fo. This is an improvement compared
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to [4, Table 2|, as the corresponding LCD code in [4, Table 2] has parameters [20,6,6]| over
.

Similarly there exists and optimal (mazimum distance separable) LCD code Cy with pa-
rameters [4,3,2] over Fg. In the same way using Co instead of Cy we obtain an LCD code
with parameters [20,9,4] over Fo. This is an improvement compared to [4, Table 2|, as the

corresponding LCD code in [4, Table 2| has parameters 20,8, 4] over Fs.

Finally we give some numerical results that we obtained using MAGMA on the values of
dwmax —isometry(q; [1, k]) for some small values of n and k for ¢ = 2 and ¢ = 3.

Table 1: Parameters of Some Isometry Codes for ¢ = 2
[, k] ‘ drmax —isometry(Q§ [n, k])
2,2] 1

NN = =W NN =

Table 2: Parameters of Some Isometry Codes for ¢ = 3

[n, k] | dimax —isometry (4; [, k)
[2,2] 0
3,2] !
[4,2] 2
[5,2] 3
[6,2] 3
3,3] !
[4,3] 2
[5,3] 2

Note that in Table 1, the isometry codes with [n, k| € {[4,2],[5,3]} over Fy are optimal
(maximum distance separable). Similarly in Table 2, the isometry codes with [n,k] €
{[5,2],[4,3],[5,3]} over F3 are optimal (maximum distance separable).
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