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Adel Alahmadi∗, Cem Güneri†, Buket Özkaya‡,
Hatoon Shoaib§, Patrick Solé¶

Abstract

Linear codes with complementary-duals (LCD) are linear codes that intersect
with their dual trivially. Multinegacirculant codes of index 2 that are LCD are
characterized algebraically and some good codes are found in this family. Exact
enumeration is performed for indices 2 and 3, and for all indices t for a special
case of the co-index by using their concatenated structure. Asymptotic existence
results are derived for the special class of such codes that are one-generator and
have co-index a power of two by means of Dickson polynomials. This shows that
there are infinite families of LCD multinegacirculant codes with relative distance
satisfying a modified Varshamov-Gilbert bound.
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1 Introduction

Linear complementary dual codes (LCD) are linear codes that intersect with their dual
trivially. They were introduced by Massey in [13], and rediscovered a few years ago in
the context of side-channel attacks [3], and recently, in the domain of quantum error
correcting codes for entanglement assisted communication [5]. In a recent paper the
class of quasi-cyclic LCD codes was shown to be “good” [6]. The main result of the
present paper is to show that some classes of one-generator quasi-twisted codes, an odd
characteristic analogue of quasi-cyclic codes, are not only good, but better than the
Varshamov-Gilbert bound. Some exact enumeration results for index 2 and index 3

∗Math. Dept., King Abdulaziz University, Jeddah, Saudi Arabia, Email: adelnife2@yahoo.com
†Sabancı University, FENS, 34956 Istanbul, Turkey, Email: guneri@sabanciuniv.edu
‡Sabancı University, FENS, 34956 Istanbul, Turkey, Email: buketozkaya@sabanciuniv.edu
§Math. Dept., King Abdulaziz University, Jeddah, Saudi Arabia, Email: hashoaib@kau.edu.sa
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are also derived. For a general index t and co-index power of 2, a special enumeration
is given which is needed for asymptotic analysis. A construction technique for index
2 (double negacirculant codes), and some examples of optimal or best such codes in
modest lengths are given. The main technical ingredients of the proofs are some results
on the number of solutions of certain diagonal equations over finite fields, given in the
Appendix.

The material is organized as follows. The next section surveys the algebraic struc-
tures of the codes we study. Section 3 collects the notions and notations needed in the
rest of the paper. Section 4 recalls some known facts on double negacirculant codes.
Section 5 describes the factorization of xn + 1 over Fq when n is a power of 2, and q is
odd. Section 6 characterizes algebraically LCD double negacirculant codes and gives
some examples with optimum distance in modest lengths. Section 7 contains exact
enumeration formulae. Section 8 builds on Section 7 to study the asymptotic perfor-
mance of multinegacirculant codes of index t where t ≥ 2. Section 9 recapitulates the
results we obtained, and exhibits some challenging open problems. Section 10 is the
Appendix mentioned above.

2 Preliminaries

A matrix A over a finite field Fq is said to be negacirculant if its rows are obtained by
successive negashifts from the first row. A negashift maps the vector (x0, . . . , xn−1) ∈ Fnq
to (−xn−1, x0, . . . , xn−2).

In this paper we consider double negacirculant (DN) codes over finite fields, that
is, [2n, n] codes with generator matrices of shape (I, A) with I the identity matrix of
size n and A a negacirculant matrix of order n. This construction was introduced in
[8] under the name quasi-twisted code. We prefer to reserve this term for the more
general class of codes described in [10]. Before describing this class, we also define
negacirculant codes of higher index over finite fields.

Three-negacirculant codes are [3n, n] codes with generator matrices of the shape
(I, A,B) with A,B negacirculant matrices of order n. Similarly one can define the
t-negacirculant code (for any t > 3) and call all such codes multinegacirculant.

A code of length N is quasi-twisted of index ` where ` | N, and co-index m = N
`

if
it is invariant under the power T `α of the constashift Tα defined as

Tα : (x0, . . . , xN−1) 7→ (αxN−1, x0, . . . , xN−2).

Thus for α = −1, DN codes are quasi-twisted codes of index 2, and three-negacirculant
codes are quasi-twisted codes of index 3, etc. Such a code affords a natural module
structure over the auxiliary ring

R(m,Fq) =
Fq[x]

〈xm − α〉
.

In other words, it can be regarded as a code of length ` over the ring R(m,Fq). When
this module has one generator over that ring the code is said to be one-generator. An
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algebraic way to study such a code is to decompose the semilocal ring R(m,Fq) as a
direct sum of local rings by the Chinese Remainder Theorem [10], thus following the
approach initiated for quasi-cyclic codes in [12]. The benefit of this technique is to
reduce the study of QT codes to that of shorter codes over larger alphabets. Besides,
the study of duality is made transparent, thus allowing the construction of LCD QT
codes, as in, for instance, [10]. The number of rings occurring in the decomposition of
R(m,Fq) equals the number of irreducible factors of xm − α. In the following section
we focus on LCD DN codes. These have been explored numerically in [6]. For some
specific alphabets, it can be shown that in that case xn + 1 can be factored into the
product of two irreducible polynomials [11, 14]. This is a favourable situation in which
to apply the Chinese Remainder Theorem approach of [12, 10], as the decomposition
of R(m,Fq) contains only two terms. It allows to derive exact enumeration formulae
and, from there, using the so-called expurgated random coding technique, to give an
asymptotic lower bound on the minimum distance of these one-generator quasi-twisted
codes of fixed arbitrary index. This is an analogue of the Varshamov Gilbert bound.

3 Definitions and Notation

3.1 Codes

Let Fq denote the finite field of order some prime-power q. We assume throughout
that q is odd. In the following, we shall consider codes over Fq of length 2n which
is coprime to q. Their generator matrices G will be of the form G = (I, A), where
I is the identity matrix of order n and A is an (n × n)-negacirculant matrix. We
call such codes double negacirculant (DN) codes. We shall denote by Ca the DN code
with first row of A being the x−expansion of a(x) in the ring R(n,Fq). Specifically, if
a(x) = a0 + a1x+ · · ·+ an−1x

n−1, then the first row is (a0, a1, . . . , an−1) and the other
rows of A are obtained by negashifts of the previous row.

If C(m) is a family of codes of parameters [m, km, dm], the rate R and relative
distance δ are defined as

R = lim sup
m→∞

km
m
,

and

δ = lim inf
m→∞

dm
m
.

Both limits are finite as they are limits of bounded quantities. Such a family of codes
is said to be good if Rδ 6= 0.

Recall the q−ary entropy function is defined for 0 < y < q−1
q

by

Hq(y) = y logq(q − 1)− y logq(y)− (1− y) logq(1− y).

This quantity is instrumental in the estimation of the volume of high-dimensional
Hamming balls when the base field is Fq. The result we are using is that the volume of
the Hamming ball of radius yn is, up to subexponential terms, qnHq(y), when 0 < y < 1,
and n goes to infinity [9, Lemma 2.10.3].
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3.2 Polynomials

The Dickson polynomials (of the first kind) are given by D0(x, α) = 2, and for m > 0,
by

Dm(x, α) =

bm/2c∑
p=0

m

m− p

(
m− p
p

)
(−α)pxm−2p.

The Dm satisfy the identity

Dm(u+ α/u, α) = um + (α/u)m.

4 Background on Double Negacirculant Codes

We consider double negacirculant (DN) codes over finite fields. These are [2n, n] codes
over Fq, where the codewords are closed under two negashifts. DN codes have sys-
tematic generating matrices G = (In : A) with A an n × n negacirculant matrix.
Algebraically, we can view such a code as an R-module in R2, generated by (1, a(x)),
where R = Fq[x]/〈xn + 1〉. In other words, a DN code is an index 2 quasi-twisted code
with λ = −1 (see [10] for notation and more information on quasi-twisted codes).

If the characteristic of Fq is 2, then a cyclic shift and a negashift are the same.
Hence a DN code is simply a double circulant code. Therefore we assume throughout
that q is odd. Moreover, we will assume that n is relatively prime to q.

As in [10], assume that the factorization of xn + 1 into irreducible polynomials over
Fq is of the form

xn + 1 = α
s∏
i=1

gi(x)
t∏

j=1

hj(x)h∗j(x), (1)

where α ∈ Fq, gj a self-reciprocal polynomial and ∗ denotes reciprocation. Let ξ be a
primitive (2n)th root of unity over Fq. Then ξn = −1 and hence ξ is a root of xn + 1.
Moreover, ξ−1 = −ξn−1. Assume that gi(ξ

ui) = 0 and hj(ξ
vj) = 0 (for all i, j). Then

we also have h∗j(−ξ(n−1)vj) = 0. By the Chinese Remainder Theorem (CRT) we have

R ' (
s⊕
i=1

Fq[x]/〈gi〉)⊕ (
t⊕

j=1

(Fq[x]/〈hj〉 ⊕ (Fq[x]/〈h∗j〉))

= (
s⊕
i=1

Fq(ξui))⊕ (
t⊕

j=1

(Fq(ξvj)⊕ (Fq(−ξ(n−1)vj))).

Let Gi = Fq[x]/〈gi〉, H ′j = Fq[x]/〈hj〉 and H ′′j = Fq[x]/〈h∗j〉 for simplicity. Note that all
of these fields are extensions of Fq. This decomposition naturally extends to R2 and
then a linear code C ⊂ R2 decomposes as

C = (
s⊕
i=1

Ci)⊕ (
t⊕

j=1

(C ′j ⊕ C ′′j )), (2)
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where each component code (constituent) is a length 2 linear code defined over the
respective base field Gi, H

′
j, H

′′
j . More specifically, again by CRT, we have

Ci = SpanGi
{(1, a(ξui))}, 1 ≤ i ≤ s,

C ′j = SpanH′j{(1, a(ξvj))}, 1 ≤ j ≤ t, (3)

C ′′j = SpanH′′j {(1, a(−ξ(n−1)vj))}, 1 ≤ j ≤ t.

The Euclidean dual of C in F2n
q is also a DN code and its decomposition is as follows

([10, Theorem 3]):

C⊥ = (
s⊕
i=1

C⊥H
i )⊕ (

t⊕
j=1

(C
′′⊥E
j ⊕ C

′⊥E
j )). (4)

Here, ⊥H denotes the Hermitian dual on Gi for all 1 ≤ i ≤ s, and ⊥E denotes the
Euclidean dual on H

′
j , H

′′
j for all 1 ≤ j ≤ t. For instance,

(1, a(ξui)) ·Gi
(1, a(ξui)) = 1 + a(ξui)a(−ξ(n−1)ui).

Remark 4.1 Let us note that the CRT decomposition described in this section extends
naturally to higher indices t ≥ 3. In this case, the codes are R-submodules of Rt.

5 Factorizations

The complete factorization of x2n + 1 over Fq with q ≡ 3 (mod 4) is given by the
following theorem [14].

Theorem 5.1 Let q ≡ 3 (mod 4), where q = 2Am− 1, A ≥ 2, m an odd integer. Let
n ≥ 2.
(a) If n < A, then x2n + 1 is the product of 2n−1 irreducible quadratic trinomials over
Fq

x2n + 1 =
∏
γ∈Γ

(x2 + γx+ 1),

where Γ is the set of all roots of D2n−1(x, 1).
(b) If n ≥ A, then x2n + 1 is the product of 2A−1 irreducible trinomials over Fq

x2n + 1 =
∏
δ∈∆

(xn−A+1 + δxn−A − 1),

where ∆ is the set of all roots of D2A−1(x,−1) in Fq.

Example 5.2 If q = 3 i.e. q ≡ 3 (mod 4), then q = 22.1 − 1 implies that A = 2,
m = 1, and ∆ = {1, 2}, then by Theorem 5.1:

x2n + 1 = (x2n−1

+ x2n−2

+ 2)(x2n−1

+ 2x2n−2

+ 2).

5



Theorem 5.3 Let q ≡ 1 (mod 4), where q = 2Am + 1, A ≥ 2, m is odd integer.
Denote by Uk the set of all primitive 2kth roots of unity in Fq. If n ≥ 2, then

(a) If n ≤ A, then ord2n+1(q) = 1 and x2n + 1 is the product of 2n linear factors over
Fq

x2n + 1 =
∏

u∈Un+1

(x+ u).

(b) If n ≥ A+ 1, then ord2n+1(q) = 2n−A and x2n + 1 is the product of 2A irreducible
binomials over Fq of degree 2n−A

x2n + 1 =
∏

u∈UA+1

(x2n−A

+ u).

Example 5.4 If q = 5 i.e. q ≡ 1 (mod 4), then q = 22.1 + 1 implies that A = 1,
m = 1, and U2 = {2, 3} , then by Theorem 5.3:

x2n + 1 = (x2n−1

+ 2)(x2n−1

+ 3).

6 Constructions and Examples

In this section, we characterize linear complementary-dual (C ∩ C⊥ = {0}) DN codes.
The proof is very similar to the double circulant case ([6, Theorem 5.1]).

Theorem 6.1 Let C = 〈(1, a(x))〉 ⊂ R2 be a double negacirculant code over Fq. Then,
C is linear complementary-dual if and only if gcd (1 + a(x)a(−xn−1), xn + 1) = 1.

Proof. Let ξ be a primitive (2n)th root of unity, and assume that xn + 1 factors
as in (1). Constituents of C are described in (3). Note that each constituent is a
1-dimensional space in the two dimensional ambient space. Hence, the dual of any
constituent is 1-dimensional too.

Note that in terms of constituents, we have that C is linear complementary-dual if
and only if Ci is linear complementary-dual relative to Hermitian product in G2

i for all
i, and C ′j ∩ C

′′⊥
j = {0}, C ′′j ∩ C

′⊥
j = {0} for all j.

Observe that Ci ∩ C
⊥Gi
i 6= {0} if and only if Ci = C⊥Gi

i , which is equivalent to

1 + a(ξui)a(−ξ(n−1)ui) = 0.

On the other hand, C ′j ∩ C
′′⊥
j 6= {0} if and only if C ′j = C ′′⊥j , which is equivalent to

1 + a(ξvj)a(−ξ(n−1)vj) = 0.

The last intersection C ′′j ∩ C
′⊥
j 6= {0} does not bring a new condition. Therefore, being

LCD for C is equivalent to the polynomial a(x)a(−xn−1) + 1 not vanishing at any root
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of xn + 1. �

The following table displays the best possible distances for double negacirculant
LCD codes C = 〈(1, a(x))〉 ⊂ R2, where C is DN of length 2n and dimension n and
index 2. The search was done in Magma ([2]) for q = 5 and random a(x) ∈ R satisfy-
ing the conditions in the above Theorem. Entries marked with ∗ are optimal or have
best-known parameters.

n 3 4 6 7 8 9 11 12 13 14 16 17
d 4* 4* 6* 6* 7* 7* 8* 9* 9 9 11* 11*
d* 4 4 6 6 7 7 8 9 10 11 11 11
r 480 128 384 28 64 36 44 48 52 56 64 68

Here, d is the minimum distance, d* is the highest minimum distance of a linear code
of given length and dimension [4], and r is the size of automorphism group.

7 Enumeration

In this section we use repeatedly the following observation. If a quasi-twisted code has
one generator as a module over the ring R(m,Fq), then it is either self-orthogonal or
LCD.

7.1 Index 2

We give a general enumeration formula that is not needed for asymptotics, but of
interest in its own right. Recall that the so-called quadratic character η of Fq is defined
as η(x) = 1 if x ∈ Fq is a nonzero square and η(x) = −1 if not.

Proposition 7.1 Let q be an odd prime power, and n ≥ 1 be an integer coprime to q.
Assume that the factorization of xn + 1 into irreducible polynomials over Fq is of the
form

xn + 1 = α
s∏
i=1

gi(x)
t∏

j=1

hj(x)h∗j(x),

with α ∈ F∗q, and gi a self-reciprocal polynomial of degree 2di, the polynomial hj is of
degree ej and ∗ denotes reciprocation. If n is odd, then let g1 = x+ 1. The number of
LCD double negacirculant codes over Fq of length 2n is

• (q − 2)
∏s

i=2(q2di − qdi − 2)
∏t

j=1(qej − 1)(qej − 2) if η(−1) = 1 and,

• q
∏s

i=2(q2di − qdi − 2)
∏t

j=1(qej − 1)(qej − 2) if η(−1) = −1,
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if n is odd and it is
s∏
i=1

(q2di − qdi − 2)
t∏

j=1

(qej − 1)(qej − 2),

when n is even.

Proof. We use the Chinese Remainder Theorem (CRT) decomposition of R(n,Fq),
as explained in §4. Since we are counting LCD quasi-twisted codes of index 2, we are
reduced to count certain codes of length 2 and dimension 1 over some extension FQ of
Fq.

In the case of Q = q which happens for n odd we have to count Euclidean self-
orthogonal codes of length 2 and dimension one over Fq. They are of the form 〈[1, a]〉,
with a a square root of −1. We thus have q or q − 2 coefficients a giving LCD codes,
depending on η(−1) = −1 or η(−1) = 1.

A self-reciprocal factor gi(x) of degree 2di leads to counting LCD hermitian codes
of length 2 over FQ, where Q = q2di . The Hermitian self-dual codes of length 2 and
dimension 1 over FQ are of the form 〈[1, a]〉, with a ∈ FQ, a solution of 1 + a1+

√
Q = 0.

By finite field theory, this equation in a admits qdi + 1 roots in Fq2di . The number of
LCD codes sought for is then (q2di − 1) − (qdi + 1). Note that the number of linear
codes of length 2 over some FQ admitting, along with their dual, a systematic form is
Q− 1, all of dimension 1. We are thus excluding the code 〈[1, 0]〉, of dual 〈[0, 1]〉.

In case of reciprocal pairs (h′(x), h′′(x)), we need two codes of length 2 over FQ that
is, C ′ = 〈[1, a′]〉, and C ′′ = 〈[1, a′′]〉⊥, satisfying the condition that both C ′ ∩ C ′′⊥ and
C ′′ ∩ C ′⊥ are trivial . This boils down to the condition a′a′′ 6= −1. So we have qej − 1
choices for a′, and a′′ ∈ H ′′j \ {0,− 1

a′
}. This gives qej − 2 choices for a′′. Hence, in total

we obtain (qej − 1)(qej − 2) choices. �

We assume now that q is such that xn+1, for n a power of 2, has only two irreducible
factors over Fq, say h′(x) and h′′(x), and that they are reciprocals of each other. Thus,

xn+1 = h′(x)h′′(x). For convenience, let K ′ = Fq [x]

〈h′(x)〉 and K ′′ = Fq [x]

〈h′′(x)〉 . These two fields
are both isomorphic to Fqn/2 . By Theorems 5.1 and 5.3, this is the case if q = 4m± 1,
with m odd. For instance this happens if q = 3, 5 but not if q = 7. The following will
be used in our asymptotic study and it is a consequence of Proposition 7.1.

Corollary 7.2 Let q be odd, and n be a power of 2. If xn + 1 factors as a product
of two irreducible polynomials over Fq, then the number of LCD double negacirculant
codes over Fq of length 2n is (q

n
2 − 1)(q

n
2 − 2).

7.2 Index 3

Proposition 7.3 Let q be odd, and n be coprime to q. Assume that the factorization
of xn + 1 into irreducible polynomials over Fqis of the form

xn + 1 = α

s∏
i=1

gi(x)
t∏

j=1

hj(x)h∗j(x),
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with α ∈ F∗q, and gi a self-reciprocal polynomial of degree 2di, the polynomial hj is of
degree ej and ∗ denotes reciprocation. If n is odd, then let g1 = x+ 1. The number of
LCD index-3 negacirculant codes over Fq of length 3n and 1-generator < [1, a, b] > is
then

(q2 − q + η(−1))
s∏
i=2

[q2di − (qdi + 1)(q2di − qdi)]
t∏

j=1

(q4ej − q3ej + qej)

if n is odd, and

s∏
i=1

[q2di − (qdi + 1)(q2di − qdi)]
t∏

j=1

(q4ej − q3ej + qej)

if n is even.

Proof. We use the Chinese Remainder Theorem (CRT) decomposition of R(n,Fq),
again. Since we are counting LCD quasi-twisted codes of index 3 and generator matrix
of the shape < [1, a, b] >, we are reduced to counting codes of length 3 and dimension
1 over some extension FQ of Fq with certain properties.

In the case Q = q we are reduced to counting LCD codes of parameters [3, 1] over
Fq. We can invoke Corollary 10.3 to obtain the factor q2 − q + η(−1) in the stated
formula.

A factor gi(x) of degree 2di leads to counting self-orthogonal hermitian codes of
length 3 over FQ, where Q = q2di . Writing the generator matrix of such a code in

the form 〈[1, a, b]〉, we must count the solutions of the equation 1 + aaq
di + bbq

di = 0
(or equivalently, a1+qdi + b1+qdi = −1). Then by Corollary 10.1 the number N of the
solutions of that equation is (

√
Q+1)(Q−

√
Q) where Q = q2di i.e. N = (qdi +1)(q2di−

qdi). By complementation the number of LCD codes of index 3 is then Q2 −N.
In case of reciprocal pairs (h′(x), h′′(x)), there are two dual constituent codes

of length 3 over FQ that is, 〈[1, a′, b′]〉 and 〈[1, a′′, b′′]〉⊥. By the condition for self-
orthogonality we have to enumerate the cases when [1, a′, b′]⊥E[1, a′′, b′′] which means
counting the solutions of the equation 1 + a′a′′ + b′b′′ = 0. Then, by Corollary 10.4
the number of the solutions of that equation is (Q3 − Q) where Q = qej . Thus, by
complementation, the number of corresponding LCD codes is Q4 −Q3 +Q. �

The following will be used in our asymptotic study and it is a consequence of
Proposition 7.3.

Corollary 7.4 Let q be odd, and n be a power of 2. If xn + 1 factors as a product of
two irreducible polynomials over Fq, then the number of LCD three-negacirculant codes

over Fq of length 3n is q2n − q 3n
2 + q

n
2 .
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7.3 Index t > 3

For higher indices, we do not have exact enumeration formula as in Propositions 7.1
and 7.3. However, we have the following analogue of Corollaries 7.2 and 7.4, which is
enough for asymptotic purposes in the next Section.

Proposition 7.5 Let q be odd, and n be a power of 2. If xn + 1 factors as a product
of two irreducible polynomials over Fq, then the number of LCD t-negacirculant codes
over Fq of length tn is qn(t−1) −

(
q

n
2

(2t−3) − η((−1)t−1)q
n
2

(t−2)
)
.

Proof. We use the Chinese Remainder Theorem (CRT) decomposition of R(n,Fq), as
explained in §4. There are two LCD codes of length t over Fq, C ′ = 〈[1, a′1, a′2, ..., a′t−1]〉
and C ′′ = 〈[1, a′′1, a′′2, ..., a′′t−1]⊥〉. For LCD condition we need to have both C ′∩C ′′⊥ and
C ′′ ∩ C ′⊥ are trivial. This boils down to the condition:

a′1a
′′
1 + a′2a

′′
2 + ...+ a′t−1a

′′
t−1 6= −1.

Now we need to count the solution of the above equation then by Corollary 10.4 the
number N of the solutions of that equation is Q2t−3 − η((−1)t−1)Qt−2 where Q = q

n
2 .

Thus by complementation, the number of corresponding LCD codes is Q(2t−2)−(Q2t−3−
η((−1)t−1)Qt−2). Hence,

N = qn(t−1) −
(
q

n
2

(2t−3) − η((−1)t−1)q
n
2

(t−2)
)
.

�

8 Asymptotics

In this section, we assume that xn + 1, for n a power of 2, has only two irreducible
factors, say h′(x) and h′′(x), and that they are reciprocal of each other. Thus, xn+1 =

h′(x)h′′(x). For convenience, let K ′ = Fq [x]

〈h′(x)〉 and K ′′ = Fq [x]

〈h′′(x)〉 . By part (b) of both

Theorems 5.1 and 5.3 (with A = 2 and A = 1, respectively), we obtain such reciprocal
pair of irreducible polynomials.

Lemma 8.1 If u 6= 0 has Hamming weight < n, there are at most (q
(t−1)n

2 −1) polyno-
mials with x-expansion a1, a2, ..., at−1 such that u ∈ Ca1,a2,...,at−1 =< [1, a1, a2, ..., at−1] >,
and Ca1,a2,...,at−1 is LCD.

Proof. Let Ca1,a2,...,at−1 =< [1, a1, a2, ..., at−1] >, and let u = (b1, b2, ..., bt−1, bt), with
b1, b2, ..., bt−1, bt vectors of length n. The condition u ∈ Ca1,a2,...,at−1 is equivalent to the
equations,

b′i+1 = a′ib
′
1 over K,′ for all i = 1, ..., t− 1

b′′i+1 = a′′i b
′′
1 over K ′′, for all i = 1, ..., t− 1
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where (b′1, b
′′
1), denotes the image by the CRT in K ′ × K ′′ of the polynomial with

x-expansion b1. Then we have, since Ca1,a2,...,at−1 is LCD, that

〈[1, a′1, a′2, ..., a′t−1]〉
⋂
〈[1, a′′1, a′′2, ..., a′′t−1]〉⊥ = {0},

which implies a′1a
′′
1 + a′2a

′′
2 + ...+ a′t−1a

′′
t−1 6= −1.

For all i = 1, 2, ..., t− 1:

(i) If b′1 6= 0, then a′i =
b′i+1

b′1
has a unique solution.

(ii) If b′1 = 0, then

(a)If b′i+1 6= 0, then we have no solution.

(b)If b′i+1 = 0, then a′i is undetermined i.e. we have q
(t−1)n

2 − 1 choices for a′i for
all i.

Similarly, we have the same solutions for a′′i for all i. Therefore, for given u =

(b1, b2, ..., bt−1, bt), there are at most q
(t−1)n

2 − 1 choices for ai for all i. �

Recall the q−ary entropy function defined for 0 < y < q−1
q

by

Hq(y) = y logq(q − 1)− y logq(y)− (1− y) logq(1− y).

Theorem 8.2 If q is odd integer, and n is a power of 2, then, for any fixed integer
t ≥ 2, there are infinite families of LCD index t negacirculant codes of relative distance
δ satisfying Hq(δ) ≥ t−1

2t
.

Proof. The negacirculant codes of index t containing a vector of weight d ∼ tδn or less

are by standard entropic estimates and Lemma 8.1 of the order (q
(t−1)n

2 − 1)× qtnHq(δ),
up to subexponential terms. This number will be less than the total number of negacir-
culant codes of index t which is, by Proposition 7.5, of the order of (q2(t−1)n

2 ) = q(t−1)n.
�

9 Conclusion

In this paper, we have studied LCD quasi-twisted codes of index t, where t ≥ 2 em-
phasizing the aspects of enumeration for t = 2 and t = 3, and, for fixed t, asymptotic
performance. It is an open problem to derive exact enumeration formulas for t > 3. It
is also an open question to study the asymptotic performance of quasi-twisted codes
with more than one generator in their module structure.
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10 Appendix

10.1 Norm function

For all x ∈ Fqn , the norm of x over Fq is a map Norm : Fqn → Fq defined by

Norm(x) = x(qn−1)/(q−1).

Moreover, Norm is a multiplicative homomorphism which is surjective ([11, Theorem
2.28]). Norm(0) = 0, so it maps F∗qn onto F∗q, where each nonzero element in F∗q has a
preimage of size (qn − 1)/(q − 1) in F∗qn .

Hence, for n = 2, we have Norm(x) = x1+q for all x ∈ F∗q2 . It is a (q+ 1) to 1 map.

Corollary 10.1 If q is odd, and n is coprime with q, then the number of solutions
(a, b) in Fq2 of the equation a(1+q) + b(1+q) = −1 is (q + 1)(q2 − q).

Proof. We could invoke [15, Corollary 4], with bn = 1, η = (1)t/r+1 = 1 , but we prefer
to give a self-contained argument. If b1+q = −1, then a = 0. By the norm map, there
are (1+q) such b ∈ F∗q2 . Then, we have q+1 solutions in F∗q2 of this form. If b1+q 6= −1,

then a1+q = −1 − b1+q has (q + 1) distinct solutions by the norm and b1+q 6= −1 is
true for (q2− (q+ 1)) elements in Fq2 . Therefore, we have (q2− q− 1)(q+ 1) solutions
for this case. Hence, in total we have (q + 1) + (q2 − q − 1)(q + 1) = (q + 1)(q2 − q)
solutions in F∗q2 . �

10.2 Quadratic Forms

We quote Theorem 6.26 of [11]. Define the function v as v(x) = −1 if x is nonzero and
v(0) = q − 1.

Theorem 10.2 Let f denote a quadratic form in an even number n of variables over
Fq, with q odd. Denote by ∆ the discriminant of f. Given b ∈ Fq, the number of
solutions in (x1, . . . , xn) ∈ Fnq of

f(x1, . . . , xn) = b

is
qn−1 + v(b)η((−1)

n
2 ∆)q

n−2
2 .

From this general statement, we derive two results useful for our purposes.

13



Corollary 10.3 If q is odd, then the number of solutions (x, y) in Fq of the equation
x2 + y2 = −1 is

q − η(−1).

Proof. Follows by the previous Theorem with b = −1, n = 2, f = x2 + y2, ∆ = 1. �

Recall that η(−1) = 1 if and only if q is a square or if q is not a square, but the
characteristic of Fq is ≡ 1 (mod 4).

Corollary 10.4 The number of solutions of x1y1 + x2y2 + ...+ xt−1yt−1 = −1 is

q2t−3 − η((−1)t−1)qt−2.

Proof. Letting A1 = x1 + y1, A′1 = x1 − y1, A2 = x2 + y2, A′2 = x2 − y2, ...,
At−1 = xt−1 + yt−1, A′t−1 = xt−1 − yt−1, the above equation can be cast into the
following diagonal form.

A1
2 − A′1

2
+ A2

2 − A′2
2

+ ...+ At−1
2 − A′t−1

2
= −4

Now we can apply the above Theorem with n = 2(t− 1), b = −4, ∆ = 1, to obtain the
stated result. �
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